Supporting Information

Unlocking Features of locked-unlocked anionic polymerization

Cun Li¹, Xuefei Leng¹, Li Han¹, Hongyuan Bai¹, Lincan Yang¹, Chao Li¹, Songbo Zhang¹, Pibo Liu^{*2}, Hongwei Ma^{*1}

 Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China (mahw@dlut.edu.cn)
King Abdullah University of Science and Technology, Saudi Arab (pibo.liu@kaust.edu.sa)

Contents

1. Synthesis of DPE-Si(O <i>i</i> Pr) ₃	1
2. The detail calculation of the unlocking efficiency	1
3. Additional data of ¹ H-NMR spectra and SEC curves	3
4. Additional MALDI-TOF-MS spectra	7
5. The detail data of DFT calculations of alkali metal alkoxides	9
6. Kinetic feature of propagation in locked-unlocked process	.10

1. Synthesis of DPE-Si(OiPr)3

Scheme S1. The routes for synthesizing DPE-Si(O-*i*Pr)₃

				0	,	•
Run	Theoretical	Locked		Unlocked	Equiv of	Unlocking
	Endcapping	A(D _{SiO} -ł	H) ^b	A(D-H) ^c	DPE/St ^d	Efficiency ^e
1 ^a	0.50	0.45	0.33	-	0/20	26.7%
2	1.00	0.91	0.26	0.16	6/5	71.4%
3	1.00	0.91	0.30	0.13	6/5	67.0%
4	0.50	0.45	0.20	0.22	10/9	55.5%
5	0.50	0.50	0.02	0.63	10/9	96.0%
6	1.00	0.90	0.19	0.62	6/5	78.9%
7	1.00	0.87	0.04	0.67	6/5	95.4%
8	1.00	0.82	0.04	0.67	6/5	95.1%
9	1.00	0.90	0.09	0.55	6/5	90.0%
10	0.5	0.39	0.02	0.73	6/5	94.8%

2. The detail calculation of the unlocking efficiency

Table S1.The detail information for unlocking efficiency of the samples

a) Run 1 was conducted for studying the kinetics influence and 8.0 eq of NaODP and 20 eq of St were fed during the unlocking process, so that there is no DPE end H in the chains; b) $A(D_{SiO}-H)$ (marked as d in the spectra: 3.6-3.4 ppm); c) A(D-H) (marked as d`: 3.0-2.9 ppm); d) the equivalents of DPE/St were the feeding ratio in the unlocking process; e) The unlocking efficiency were calculated accounting to equation (S1).

The unlocking efficiency were calculated with the following equation:

$$Unlocking Efficiency = \frac{A_{D_{Si0}} - H(Locked) - A_{D_{Si0}} - H(Unlocked)}{A_{D_{Si0}} - H(Locked)} \times 100\%$$
(1)

 $A_{D_{Si0}-H}(Locked)$ and $A_{D_{Si0}-H}(Unlocked)$ represent the integral values in the region from δ =3.6-3.4 ppm in Locked Samples and Unlocked Samples respectively. Eg.

As shown in Figure S1, the ¹H-NMR spectra of samples from Run 1 were displayed. During the four stages, the interval of End-H of DPE-Si(OiPr)₃ were changed in different state such as 0.45 H of locked and 0.33 H of unlocked. Further more, it is the transformation from PSt-D_{SiO}-Li to PSt-Li lead to the integral changes in these spectra. Account for that, based on a standand of 6 H for *sec*-butyl group, the integral areas of D_{SiO}-H in different spectra could be compared.

For the data in equation (1), $A_{DSiO-H}(locked)=0.45$ H, $A_{DSiO-H}(unlocked)=0.33$ H Unlocking Efficiency = $\frac{0.45 - 0.33}{0.45}x \, 100\% = 26.7\%$

Figure S1. Full ¹H NMR spectra of samples of Run 1 in Table S1

3. Additional data of ¹H-NMR spectra and SEC curves

Figure S2. Full ¹H NMR spectra of samples of Run 2 in Table S1

Figure S3. Full ¹H NMR spectra of samples of Run 3 in Table S1

Figure S4. Full ¹H-NMR and SEC of samples of Run 4 in Table S1

Figure S5. Full ¹H NMR spectra of samples of Run 5 in Table S1

Figure S6. Full ¹H NMR spectra of samples of Run 6 in Table S1

Figure S8. Full ¹H NMR spectra of samples of Run 8 in Table S1

Figure S9. Full ¹H NMR spectra of samples of Run 9 in Table S1

Figure S11. 1H NMR and SEC of half-locked species with lower molecular weight(RUN 10 in Table S1)

4. Additional MALDI-TOF-MS spectra

During studying the unlocking capacity of t-BuOK, due to the limitation of experimental instruments of MALDI-TOF-MS, the sample's MWs should be lower and with narrow PDI values for more precise analyzation. So we designed a new experiment with lower molecular weight than Run 4 discussed in main text for studying the unlocking process under half-locked species and the feeding ratio of t-BuOK was 2.0 eq in this experiment. The products in this process were also carefully characterized by ¹H-NMR and SEC as shown in Figure S11.

Figure S12. MALDI-TOF-MS of the partially DPE-Si(O*i*Pr)₃ end-capped PS (DPE-Si(O*i*Pr)3/L*i*/t-BuOK=0.5/1.0/2.0

Figure S13 MALDI-TOF-MS of samples taken from Run 7 (eqv. (DPE-Si(O*i*Pr)₃/Li/t-BuOK)=1/1/2)

5. The detail data of DFT calculations of alkali metal alkoxides

Alk	alis		t-BuOLi	NaODP	t-BuOK
Radius of al	kali metal ,	/Å	1.54	1.91	2.34
Dond properties	Length/Å		1.634	2.003	2.270
sf M O b	Dipole/Debye		6.2114	9.2792	9.8552
of M-O ⁵	Charge ^c	Mt(δ⁺)	0.602	0.697	0.938
		O(δ⁻)	-0.626	-0.716	-1.110

Table S2. The propersities of bases utilized in the switchable polyerization

a) the Radius was abtained from the pertinent literatures; b) the data for bond properties of M-O were calculated using M062x/6–311G(d,p) by Gaussian 09

6. Kinetic feature of propagation in locked-unlocked process

Scheme S2 Kinetic feature of the cross-over propagation in locked-unlocked

anionic polymerization with St as re-starting monomer.