Supporting Information for:

8-Arylnaphthyl Substituent Retarding Chain Transfer in Insertion

Polymerization with Unsymmetrical α-Diimine Systems

Shuaikang Li, Shengyu Dai*

Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China

*Corresponding Author: <u>daiyu@ustc.edu.cn</u> (S. Dai).

- 1. Experimental sections
- **1.1 General Considerations**
- 1.2 Procedure for the Synthesis of α-Imino-Ketones I1-I4.
- 1.3 Procedure for the Synthesis of Ligands L1-L4.
- 1.4 Procedure for the Synthesis of Nickel Complexes Ni1-Ni4.
- 1.5 Procedure for the Synthesis of Palladium Complexes Pd1-Pd4.
- 2. Spectra Data
- 2.1 ¹H and ¹³C NMR of the Synthetic Compounds.
- 2.2 HESI-MS of I2-I3, L1-L4.
- 2.3 MALDI-TOF of Complexes Ni1-Ni4 and Pd1-Pd4.
- 2.4 ¹H and ¹³C NMR of Polymer and Copolymer.
- 2.5 DSC and GPC of Polymer and Copolymer and Time-Dependence Curves.
- 3. References
- 4. X-ray Crystallography

1. Experimental sections

1.1 General Considerations

All chemicals were commercially sourced, except those whose synthesis is described. All experiments were carried out under a dry nitrogen atmosphere using standard Schlenk techniques or in a glove-box. Deuterated solvents used for NMR were dried and distilled prior to use. ¹H, ¹³C NMR spectra were recorded by a JEOL JNM-ECZ600R 600 spectrometer or JEOL JNM-ECZ400R 400 spectrometer at ambient temperature unless otherwise stated. The chemical shifts of the ¹H and ¹³C NMR spectra were referenced to the residual solvent; Coupling constants are in Hz. Mass spectra were obtained using electro spray ionization (HESI) LCMS-2010A for I2~I3, L1~L4. Mass spectra of the complexes Ni1~Ni4 and Pd1~Pd4 were recorded on a Atouflex Speed MALDI-TOF MS. Elemental analysis was performed by the Analytical Center of Anhui University. X-ray Diffraction data were collected at 298(2) K on a Bruker Smart CCD area detector with graphite-monochromated Mo K^{α} radiation ($\lambda = 0.71073$) Å). Molecular weight and molecular weight distribution of the polymers with low solubility at room temperature were determined by gel permeation chromatography (GPC) with a PL 210 equipped with one Shodex AT-803S and two Shodex AT-806MS columns at 150 °C using trichlorobenzene as a solvent and calibrated with polystyrene standards. The molecular weight and the molecular weight distribution of the polymers with good solubility at room temperature were determined by gel permeation chromatography (GPC) equipped with two linear Styragel columns (HR2 and HR4) at 40°C using THF as a solvent and calibrated with polystyrene standards, and THF was employed as the eluent at a flow rate of 1.0 mL/min. DSC was performed by a DSC Q20 from TA Instruments. Samples were quickly heated to 150°C and kept for 5 min to remove thermal history, then cooled to 0°C at a rate of 10 K/min, and finally reheated to 150°C at the same rate under a nitrogen flow (50 mL/min). The maximum points endotherm (heating scan) were taken as the melting temperature (T_m) .

1.2 Procedure for the Synthesis of α-Imino-Ketones I1-I4.

A solution of arylamine (10 mmol), 2,3-butadione (30 mmol) and *p*-toluenesulfonic acid (20 mg) in toluene (100 mL) was stirred at 80 °C for 24 h, until there was one main point on the TLC plate. The solvent was partially evaporated under reduced pressure until the formation of

a light yellow solid. The remaining solution was diluted in methanol (100 mL). The yellow solid was isolated by filtration, dried by vacuum.

I1 (4.37 g, 86%), This compound is known¹.

I2 (4.87 g, 84%). ¹H NMR (600 MHz, CDCl₃) δ 6.98 – 6.88 (m, 16H, aryl-*H*), 6.58 (s, 2H, aryl-*H*), 5.04 (s, 2H, CHAr₂), 2.29 (s, 3H, COCH₃), 2.16 (s, 3H, aryl-CH₃), 0.83 (s, 3H, N=C*Me*). ¹³C NMR (151 MHz, CDCl₃) δ 199.29 (COCH₃), 168.75 (N=CMe), 162.41, 162.35, 160.78, 160.72, 144.28, 138.69, 138.67, 137.83, 137.81, 133.09, 130.97, 130.92, 130.71, 130.66, 128.82, 115.68, 115.54, 115.22, 115.08, 50.74 (CHAr₂), 24.92 (COCH₃), 21.34 (aryl-CH₃), 14.87 (N=C*Me*). ¹⁹F NMR (565 MHz, CDCl₃) δ -115.53 – -115.66 (m), -116.38 (t, *J* = 6.3 Hz). HESI-MS (m/z): calcd for C₃₇H₃₀ONF₄: 580.2258, found: 580.2264 [M+H]⁺.

I3 (5.52 g, 89%). ¹H NMR (600 MHz, CDCl₃) δ 6.84 (s, 2H, aryl-*H*), 6.80 (s, 2H, aryl-*H*), 6.69 (s, 2H, aryl-*H*), 6.67 (s, 4H, aryl-*H*), 6.64 (s, 4H, aryl-*H*), 4.94 (s, 2H, CHAr₂), 2.32 (s, 3H, COC*H*₃), 2.26 (s, 12H, aryl-C*H*₃), 2.22 (s, 15H, aryl-C*H*₃), 0.73 (s, 3H, N=C*Me*). ¹³C NMR

(151 MHz, CDCl₃) δ 199.76 (COCH₃), 168.29 (N=CMe), 144.68, 143.19, 142.40, 137.86, 137.44, 132.24, 131.15, 128.48, 127.97, 127.89, 127.60, 127.36, 52.55 (CHAr₂), 24.77 (COCH₃), 21.54 (aryl-CH₃), 21.49 (aryl-CH₃), 21.39 (aryl-CH₃), 14.46 (N=C*Me*). HESI-MS (m/z): calcd for C₄₅H₅₀ON: 620.3887, found: 620.3882 [M+H]⁺.

I4 (5.96 g, 94%). This compound is known 2 .

1.3 Procedure for the Synthesis of Ligands L1-L4.

A mixture of α -imino-ketones (4 mmol) and n-butylamine (40.0 mmol) in toluene (40 mL) was stirred at 80 °C for 24 h. The solvent was evaporated under reduced pressure. The remaining mixture was diluted with methanol (100 mL). The resulting yellow solid was collected by filtration and recrystallized from CH₂Cl₂ and hexanes to afford the desired product.

L1 (1.46 g, 65%). ¹H NMR (600 MHz, CDCl₃) δ 7.29 – 7.12 (m, 12H, aryl-*H*), 7.03 (dt, *J* = 7.3, 3.3 Hz, 8H, aryl-*H*), 6.64 (s, 2H, aryl-*H*), 5.17 (s, 2H, C*H*Ph₂), 3.46 (t, *J* = 7.0 Hz, 2H, N-CH₂CH₂CH₂CH₃), 2.15 (s, 3H, aryl-CH₃), 1.97 (s, 3H, Bu-N=C*Me*), 1.62 (dt, *J* = 19.7, 7.1 Hz, 2H, N-CH₂CH₂CH₂CH₂CH₃), 1.39 (dt, *J* = 14.4, 7.2 Hz, 2H, N-CH₂CH₂CH₂CH₃), 0.98 (t, *J* = 7.4 Hz, 3H, N-CH₂CH₂CH₂CH₃), 0.90 (s, 3H, Ar-N=C*Me*). ¹³C NMR (151 MHz, CDCl₃) δ 170.70 (Bu-N=CMe), 166.38 (Ar-N=CMe), 146.12, 143.72, 142.77, 131.61, 129.85, 129.53, 128.65, 128.35, 128.08, 126.26, 126.05, 52.34 (N-CH₂CH₂CH₂CH₃), 52.18 (CHAr₂), 32.77 (N-CH₂CH₂CH₂CH₃), 21.38 (aryl-CH₃), 20.78 (N-CH₂CH₂CH₂CH₃), 15.95 (Bu-N=C*Me*), 14.11 (Ar-N=C*Me*), 12.64 (N-CH₂CH₂CH₂CH₃). HESI-MS (m/z): calcd for C₄₁H₄₃N₂: 563.3426, found: 563.3417 [M+H]⁺.

L2 (1.88 g, 74%). ¹H NMR (600 MHz, CDCl₃) δ 7.06 – 6.88 (m, 16H, aryl-*H*), 6.58 (s, 2H, aryl-*H*)), 5.12 (s, 2H, CHAr₂), 3.46 (t, J = 6.7 Hz, 2H, N-CH₂CH₂CH₂CH₃), 2.16 (s, 3H, aryl-CH₃), 1.94 (s, 3H, Bu-N=CMe), 1.69 – 1.57 (m, 2H, N-CH₂CH₂CH₂CH₃), 1.41 (dt, J = 14.6, 7.2 Hz, 2H, N-CH₂CH₂CH₂CH₂CH₂CH₃), 1.41 (dt, J = 14.6, 7.2 Hz, 2H, N-CH₂CH₂CH₂CH₂CH₂CH₃), 1.02 (s, 3H, Ar-N=CMe), 0.99 (t, J = 7.3 Hz, 3H, N-CH₂CH₂CH₂CH₃). ¹³C NMR (151 MHz, CDCl₃) δ 170.71 (Bu-N=CMe), 166.06 (Ar-N=CMe), 162.31, 162.25, 160.69, 160.63, 145.81, 139.08, 138.28, 131.87, 131.45, 131.09, 131.04, 130.75, 130.70, 128.60, 115.38, 115.24, 115.04, 114.90, 52.41 (N-CH₂CH₂CH₂CH₂CH₃), 50.62 (CHAr₂), 32.76 (N-CH₂CH₂CH₂CH₃), 21.33 (aryl-CH₃), 20.78 (N-CH₂CH₂CH₂CH₃), 16.15 (Bu-N=CMe), 14.06 (Ar-N=CMe), 12.61 (N-CH₂CH₂CH₂CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ -116.24 (s), -116.87 (s). HESI-MS (m/z): calcd for C₄₁H₃₉N₂F₄: 635.3044, found: 635.3049 [M+H]⁺.

L3 (2.27 g, 84%). ¹H NMR (600 MHz, CDCl₃) δ 6.81 (s, 2H, aryl-*H*), 6.78 (s, 2H, aryl-*H*), 6.67 (s, 6H, aryl-*H*), 6.65 (s, 4H, aryl-*H*), 5.00 (s, 2H, CHAr₂), 3.47 (t, *J* = 7.1 Hz, 2H, N-CH₂CH₂CH₂CH₃), 2.25 (s, 12H, aryl-CH₃), 2.20 (s, 15H, aryl-CH₃), 1.99 (s, 3H, Bu-N=C*Me*), 1.68 – 1.60 (m, 2H, N-CH₂CH₂CH₂CH₃), 1.43 (dp, *J* = 14.8, 7.2 Hz, 2H, N-CH₂CH₂CH₂CH₂CH₃), 1.00 – 0.96 (m, 3H, N-CH₂CH₂CH₂CH₃), 0.87 (s, 3H, Ar-N=C*Me*). ¹³C NMR (151 MHz, CDCl₃) δ 170.24 (Bu-N=CMe), 166.73 (Ar-N=CMe), 146.06, 143.60, 142.76, 137.53, 137.21, 131.71, 131.10, 128.27, 127.73, 127.64, 127.44, 52.47 (N-CH₂CH₂CH₂CH₃), 52.34 (CHAr₂),

32.96 (N-CH₂CH₂CH₂CH₃), 21.53 (aryl-CH₃), 21.49 (aryl-CH₃), 21.42 (aryl-CH₃), 20.89 (N-CH₂CH₂CH₂CH₃), 15.83 (Bu-N=C*Me*), 14.13 (Ar-N=C*Me*), 12.48 (N-CH₂CH₂CH₂CH₂CH₃). HESI-MS (m/z): calcd for C₄₉H₅₉N₂: 675.4673, found: 675.4669 [M+H]⁺.

L4 (2.37 g, 86%). ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 6.3 Hz, 1H, aryl-H), 7.34 – 7.30 (m, 1H, aryl-H), 7.28 – 7.24 (m, 2H, aryl-H), 7.21 – 7.00 (m, 18H, aryl-H), 6.94 (d, J = 7.5 Hz, 1H, aryl-H), 6.89 (d, J = 6.5 Hz, 2H, aryl-H), 6.78 (dd, J = 7.4, 1.3 Hz, 2H, aryl-H), 6.68 (s, 1H, aryl-H), 6.22 (s, 1H, CHAr₂), 5.43 (s, 1H, CHAr₂), 3.25 (dtd, J = 20.0, 13.3, 7.1 Hz, 2H, N-CH₂CH₂CH₂CH₃), 2.32 (s, 3H, aryl-CH₃), 1.68 (s, 3H, Bu-N=CMe), 1.56 – 1.47 (m, 2H, N-CH₂CH₂CH₂CH₃), 1.40 – 1.32 (m, 2H, N-CH₂CH₂CH₂CH₃), 0.97 (t, J = 7.3 Hz, 3H, N-CH₂CH₂CH₂CH₃), 0.79 (s, 3H, Ar-N=CMe). ¹³C NMR (151 MHz, CDCl₃) δ 168.74 (Bu-N=CMe), 166.38 (Ar-N=CMe), 145.24, 144.31, 143.91, 143.88, 142.61, 142.03, 139.78, 135.23, 134.24, 132.25, 130.83, 130.64, 129.65, 129.56, 129.45, 129.26, 128.48, 128.40, 128.37, 128.28, 128.14, 128.07, 127.95, 127.41, 126.47, 126.29, 126.21, 125.99, 125.87, 124.83, 123.97, 123.45, 53.44 (CHAr₂), 52.29 (CHAr₂), 52.06 (N-CH₂CH₂CH₂CH₃), 32.51 (N-CH₂CH₂CH₂CH₃), 21.18 (aryl-CH₃), 20.88 (N-CH₂CH₂CH₂CH₃), 16.12 (Bu-N=CMe), 14.17 (Ar-N=CMe), 11.90 (N-CH₂CH₂CH₂CH₃). HESI-MS (m/z): calcd for C₅₁H₄₉N₂: 689.3890, found: 689.3882 [M+H]⁺.

1.4 Procedure for the Synthesis of Nickel Complexes Ni1-Ni4.

The nickel complexes were prepared in a similar manner by the reaction of 0.2 mmol ligand with 1 equivalent (DME)NiBr₂ in dichloromethane. After stirring overnight, the solvent was removed, and the brown solid powder was washed with ether (10 mL \times 2) and dried under vacuum to give the corresponding nickel complexes.

Ni1 (0.14 g, 89%). Anal. Calcd for (C₄₁H₄₂Br₂N₂Ni): C, 63.03; H, 5.42; N, 3.59. Found: C, 63.18; H, 5.65; N, 3.74. MALDI-TOF-MS (m/z): calcd for C₄₁H₄₂BrN₂Ni: 701.1864, found: 700.9077 [M-Br]⁺.

Ni2 (0.15 g, 87%). Anal. Calcd for (C₄₁H₃₈Br₂F₄N₂Ni): C, 57.71; H, 4.49; N, 3.28. Found: C, 57.48; H, 4.71; N, 3.15. MALDI-TOF-MS (m/z): calcd for C₄₁H₃₈BrF₄N₂Ni: 773.1488, found: 772.8644 [M-Br]⁺.

Ni3 (0.15 g, 82%). Anal. Calcd for (C₄₉H₅₈Br₂N₂Ni): C, 65.87; H, 6.54; N, 3.14. Found: C, 65.95; H, 6.72; N, 3.02. MALDI-TOF-MS (m/z): calcd for C₄₉H₅₈BrN₂Ni: 813.3116, found: 813.0918 [M-Br]⁺.

Ni4 (0.16 g, 89%). Anal. Calcd for (C₅₁H₄₈Br₂N₂Ni): C, 67.50; H, 5.33; N, 3.09. Found: C, 67.28; H, 5.14; N, 3.13. MALDI-TOF-MS (m/z): calcd for C₅₁H₄₈BrN₂Ni: 827.2334, found: 826.9916 [M-Br]⁺.

1.5 Procedure for the Synthesis of Palladium Complexes Pd1-Pd4.

A mixture of the ligand (1 mmol), Pd(COD)MeCl (265 mg, 1 mmol) in CH_2Cl_2 (20 mL) was stirred for 1 day at room temperature. During stirring, the color of the solution was deepening. At the end of the reaction, the solution was concentrated to 2 mL. The product was crashed out with 20 ml ether and washed with ether (3 × 5 mL). Then dried under reduced pressure at room temperature for about 5 h. The pure compound was obtained as an orange or yellow solid.

Pd1 (0.66 g, 91%). a-isomer: b-isomer = 20:1, ¹H NMR (600 MHz, CDCl₃) δ 7.30, 7.20 (ddt, J = 21.4, 14.2, 7.1 Hz, 10H, aryl-H), 7.16 – 7.10 (m, 6H, aryl-H), 7.07 (d, J = 7.5 Hz, 4H, aryl-H), 6.75, 6.61 (s, 2H, aryl-H), 5.97, 5.87 (s, 2H, CHAr₂), 4.03, 3.80 (t, J = 7.4 Hz, 2H, N- $CH_2CH_2CH_2CH_3$), 2.18, 2.13 (s, 3H, aryl- CH_3), 1.87 – 1.80, 1.74 (m, 2H, N- $CH_2CH_2CH_2CH_2CH_3$), 1.50 (dd, J = 14.7, 7.3 Hz, 2H, N- $CH_2CH_2CH_2CH_3$), 1.04, 0.87 (t, J = 7.3 Hz, 3H, N- $CH_2CH_2CH_2CH_3$), 1.09, 0.91 (s, 3H, Pd- CH_3), -0.43, -0.47 (s, 3H, Ar-N=CMe). ¹³C NMR (151 MHz, CDCl₃) δ 179.92 (Bu-N=CMe), 166.85 (Ar-N=CMe), 142.28, 141.33, 141.10, 136.22, 135.53, 130.36, 129.49, 129.19, 128.77, 128.25, 126.76, 126.58, 52.17 (N- $CH_2CH_2CH_2CH_3$), 51.99 (CHAr₂), 32.03 (N- $CH_2CH_2CH_2CH_3$), 21.53 (aryl- CH_3), 20.74 (N- $CH_2CH_2CH_2CH_3$), 19.73 (Bu-N=CMe), 15.52 (Ar-N=CMe), 14.13 (N- $CH_2CH_2CH_2CH_3$), 3.19 (Pd- CH_3). Anal. Calcd for ($C_{42}H_{45}ClN_2Pd$): C, 70.29; H, 6.30; N, 3.89. Found: C, 70.43; H, 6.17; N, 3.71. MALDI-TOF-MS (m/z): calcd for $C_{41}H_{42}N_2Pd$: 668.2383, found: 668.0474

[M-Me-Cl]⁺.

Pd2 (0.73 g, 92%). a-isomer: b-isomer = 5:1, ¹H NMR (600 MHz, CDCl₃) δ 7.22, 7.17 – 7.11 (dd, m, J = 8.5, 5.5 Hz, 2H, aryl-H), 7.11 - 7.05 (m, 4H, aryl-H), 6.98 - 6.88 (m, 10H, aryl-H),6.69, 6.56 (s, 2H, aryl-H), 5.90, 5.81 (s, 2H, CHAr₂), 4.02, 3.79 (t, J = 7.6 Hz, 2H, N-CH₂CH₂CH₂CH₃), 2.19, 2.14 (s, 3H, aryl-CH₃), 1.84 - 1.76, 1.74 - 1.70 (m, 2H, N- $CH_2CH_2CH_2CH_3$, 1.68, 1.62 (s, 3H, Bu-N=CMe), 1.53 – 1.43 (m, 2H, N-CH₂CH₂CH₂CH₃), 1.09, 0.83 (s, 3H, Pd-CH₃), 1.02 (t, J = 7.4 Hz, 3H, N-CH₂CH₂CH₂CH₃), -0.19, -0.26 (s, 3H, Ar-N=CMe). ¹³C NMR (151 MHz, CDCl₃) δ 179.49 (Bu-N=CMe), 174.02 (Bu-N=CMe), 171.97 (Ar-N=CMe), 166.65 (Ar-N=CMe), 162.50, 160.87, 140.82, 139.17, 138.59, 137.96, 137.75, 137.36, 136.97, 136.79, 136.54, 135.35, 134.82, 134.68, 132.45, 131.56, 131.51, 131.24, 131.18, 130.84, 130.79, 129.25, 128.83, 115.90, 115.76, 115.67, 115.54, 115.28, 115.14, 115.03, 114.89, 114.34, 53.53 (N-CH₂CH₂CH₂CH₃), 52.34 (N-CH₂CH₂CH₂CH₃), 50.58 (CHAr₂), 50.35 (CHAr₂), 32.04 (N-CH₂CH₂CH₂CH₃), 31.84 (N-CH₂CH₂CH₂CH₃), 21.51 (aryl-CH₃), 20.73 (N-CH₂CH₂CH₂CH₃), 20.41 (aryl-CH₃), 20.29 (Bu-N=CMe), 19.28 (Bu-N=CMe), 16.99 (Ar-N=CMe), 15.72 (Ar-N=CMe), 14.08 (N-CH₂CH₂CH₂CH₃), 13.99 (N- $CH_2CH_2CH_2CH_3$, 3.23 (Pd-CH₃). ¹⁹F NMR (565 MHz, CDCl₃) δ -114.15 (d, J = 8.1 Hz), -114.86 (d, J = 6.8 Hz), -115.90 (t, J = 9.4 Hz), -116.74 (d, J = 7.4 Hz). Anal. Calcd for (C₄₂H₄₁ClF₄N₂Pd): C, 63.72; H, 5.22; N, 3.54. Found: C, 63.87; H, 5.37; N, 3.40. MALDI-TOF-MS (m/z): calcd for C₄₁H₃₈F₄N₂Pd: 740.2006, found: 739.3266 [M-Me-Cl]⁺.

Pd3 (0.73 g, 88%). a-isomer: b-isomer = 30:1, ¹H NMR (600 MHz, CDCl₃) δ 6.99 – 6.60 (m, 14H, aryl-*H*), 5.78, 5.65 (s, 2H, CHAr₂), 4.02, 3.77 (t, *J* = 7.6 Hz, 2H, N-CH₂CH₂CH₂CH₂CH₃), 2.28 – 2.09 (m, 27H, aryl-CH₃), 1.81 (dt, *J* = 15.3, 7.7 Hz, 2H, N-CH₂CH₂CH₂CH₃), 1.55 (dd, *J* = 13.3, 5.3 Hz, 2H, N-CH₂CH₂CH₂CH₃), 1.51 (s, 3H, Bu-N=CMe), 1.02 (dd, *J* = 9.3, 5.4 Hz, 3H, N-CH₂CH₂CH₂CH₃), 1.07, 0.88 (s, 3H, Pd-CH₃), -0.37, -0.44 (s, 3H, Ar-N=CMe). ¹³C NMR (151 MHz, CDCl₃) δ 179.47 (Bu-N=CMe), 166.73 (Ar-N=CMe), 142.15, 141.47, 140.94, 138.03, 137.50, 135.92, 135.60, 128.81, 128.18, 128.02, 127.35, 52.11 (N-CH₂CH₂CH₂CH₃), 52.01 (CHAr₂), 32.32 (N-CH₂CH₂CH₂CH₃), 21.69 (aryl-CH₃), 21.53 (aryl-CH₃), 21.35 (aryl-CH₃), 20.83 (N-CH₂CH₂CH₂CH₃), 19.41 (Bu-N=CMe), 15.19 (Ar-N=CMe), 14.18 (N-CH₂CH₂CH₂CH₃), 3.46 (Pd-CH₃). Anal. Calcd for (C₅₀H₆₁ClN₂Pd): C, 72.19; H, 7.39; N, 3.37. Found: C, 72.44; H, 7.12; N, 3.43. MALDI-TOF-MS (m/z): calcd for C₄₉H₅₈N₂Pd: 780.3635, found: 780.1172 [M-Me-Cl]⁺.

Pd4 (0.79 g, 93%). a-isomer: b-isomer = 4:1, ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.5 Hz, 1H, aryl-H), 8.00, 7.79 (d, J = 7.6 Hz, 1H, aryl-H), 7.59 – 7.51 (m, 1H, aryl-H), 7.40 – 7.34, 7.32 – 7.27 (m, 1H, aryl-H), 7.27 – 6.84 (m, 23H, aryl-H), 6.88, 6.78 (s, 1H, aryl-H), 6.64, 6.61 (s, 1H, CHAr₂), 6.23, 6.19 (s, 1H, CHAr₂), 3.96, 3.44 – 3.35 (m, 1H, N-CH₂CH₂CH₂CH₃), 3.49 (ddd, J = 20.9, 12.0, 6.5 Hz, 1H, N-CH₂CH₂CH₂CH₃), 2.34 – 2.27 (m, 3H, aryl-H), 1.77 – 1.67 (m, 1H, N-CH₂CH₂CH₂CH₃), 1.65 – 1.54 (m, 1H, N-CH₂CH₂CH₂CH₃), 1.51, 1.48 (s, 3H, Bu-N=CMe), 1.45 (dd, J = 14.7, 7.4 Hz, 2H, N-CH₂CH₂CH₂CH₃), 1.51, 1.48 (s, 3H, Bu-N=CMe), 1.45 (dd, J = 14.7, 7.4 Hz, 2H, N-CH₂CH₂CH₃).

CH₂CH₂CH₂CH₃), 1.21, 1.02 (t, J = 7.3 Hz, 3H, N-CH₂CH₂CH₂CH₃), 1.02, 0.76 (s, 3H, Pd-CH₃), 0.43, 0.42 (s, 3H, Ar-N=CMe). ¹³C NMR (151 MHz, CDCl₃) δ 175.81 (Bu-N=CMe), 170.80 (Bu-N=CMe), 170.57 (Ar-N=CMe), 165.69 (Ar-N=CMe), 144.06, 143.58, 143.28, 143.18, 142.51, 142.44, 141.73, 141.65, 141.11, 140.25, 139.69, 139.30, 138.80, 138.61, 137.68, 136.36, 135.60, 133.74, 133.46, 133.39, 132.09, 131.79, 131.59, 131.24, 130.66, 130.56, 130.36, 130.09, 129.69, 129.56, 129.51, 129.33, 129.23, 128.59, 128.53, 128.49, 128.43, 128.36, 128.14, 127.90, 127.43, 127.30, 126.69, 126.52, 126.47, 126.28, 126.08, 125.92, 125.75, 125.44, 125.16, 124.90, 124.85, 124.73, 124.43, 53.77 (N-CH₂CH₂CH₂CH₃), 53.69 (N-CH₂CH₂CH₂CH₃), 53.56 (CHAr₂), 53.11 (CHAr₂), 52.48 (CHAr₂), 52.06 (CHAr₂), 31.83 (N-CH₂CH₂CH₂CH₃), 31.57 (N-CH₂CH₂CH₂CH₃), 21.43 (aryl-CH₃), 21.35 (aryl-CH₃), 20.79 (N-CH₂CH₂CH₂CH₃), 20.56 (Bu-N=CMe), 20.42 (N-CH₂CH₂CH₂CH₃), 19.98 (Bu-N=CMe), 16.46 (Ar-N=CMe), 15.43 (Ar-N=CMe), 14.20 (N-CH₂CH₂CH₂CH₃), 14.10 (N-CH₂CH₂CH₂CH₃), 2.15 (Pd-CH₃). Anal. Calcd for (C₅₂H₅₁ClN₂Pd): C, 73.84; H, 6.08; N, 3.31. Found: C, 73.61; H, 6.24; N, 3.45. MALDI-TOF-MS (m/z): calcd for C₅₁H₄₈ClN₂Pd: 829.2541, found: 829.2955 [M-Me]⁺.

1.6 A General Procedure for the Homopolymerization of Ethylene with Nickel Complexes

In a typical experiment, a 300 mL stainless pressure reactor connected with a high pressure gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 20 mL of toluene and the desired amount MAO was added to the reactor under N_2 atmosphere, then the desired amount of catalyst in 2 mL of CH_2Cl_2 was injected into the polymerization system via syringe. With a rapid stirring, the reactor was pressurized and maintained at 5 atm of ethylene. After 0.5 h, the pressure reactor was vented and the polymer was precipitated in ethanol, filtered and dried at 50 °C for at least 24 h under vacuum. For the reaction with oligomer as polymerization product, the oligomer was directly dried, dissolved and filtered with petroleum ether, and the filtrate was dried in vacuum for the polymerization product.

1.7 A General Procedure for the Homopolymerization of Ethylene with Palladium Complexes

In a typical experiment, a 300 mL stainless pressure reactor connected with a high pressure

gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 40 mL of toluene and the desired amount NaBArF was added to the reactor under N_2 atmosphere, then the desired amount of catalyst in 2 mL of CH_2Cl_2 was injected into the polymerization system via syringe. With a rapid stirring, the reactor was pressurized and maintained at 5 atm of ethylene. After 3 h, the pressure reactor was vented and the polymer was dried under vacuum.

1.8 A General Procedure for the Copolymerization of MA with Ethylene

In a typical experiment, a 300 mL stainless pressure reactor connected with a high pressure gas line was firstly dried at 90 °C under vacuum for at least 1 h. The reactor was then adjusted to the desired polymerization temperature. 20 mL DCM and the desired polar monomer with the desired amount NaBArF was added to the reactor under N₂ atmosphere, then the desired amount of Pd catalyst in 2 mL of CH₂Cl₂ was injected into the polymerization system via syringe subsequently. With a rapid stirring, the reactor was pressurized and maintained at the desired pressure of ethylene. After 3 h, the pressure reactor was vented and the copolymer was dried under vacuum.

Spectra Data ¹H and ¹³C NMR of the Synthetic Compounds.

Figure S1. ¹H NMR spectrum of I2 in CDCl₃.

Figure S2. ¹³C NMR spectrum of I2 in CDCl₃.

Figure S3. ¹⁹F NMR spectrum of I2 in CDCl₃.

Figure S4. ¹H NMR spectrum of I3 in CDCl₃.

Figure S5. ¹³C NMR spectrum of I3 in CDCl₃.

Figure S6. ¹H NMR spectrum of L1 in CDCl₃.

Figure S7. ¹³C NMR spectrum of L1 in CDCl₃.

Figure S8. ¹H NMR spectrum of L2 in CDCl₃.

Figure S9. ¹³C NMR spectrum of L2 in CDCl₃.

Figure S10. ¹⁹F NMR spectrum of L2 in CDCl₃.

Figure S11. ¹H NMR spectrum of L3 in CDCl₃.

Figure S12. ¹³C NMR spectrum of L3 in CDCl₃.

Figure S13. ¹H NMR spectrum of L4 in CDCl₃.

Figure S14. ¹³C NMR spectrum of L4 in CDCl₃.

Figure S15. ¹H NMR spectrum of Pd1 in CDCl₃.

Figure S16. ¹³C NMR spectrum of Pd1 in CDCl₃.

Figure S17. ¹H NMR spectrum of Pd2 in CDCl₃.

Figure S18. ¹³C NMR spectrum of Pd2 in CDCl₃.

Figure S19. ¹⁹F NMR spectrum of Pd2 in CDCl₃.

Figure S20. ¹H NMR spectrum of Pd3 in CDCl₃.

Figure S21. ¹³C NMR spectrum of Pd3 in CDCl₃.

Figure S22. ¹H NMR spectrum of Pd4 in CDCl₃.

Figure S23. ¹³C NMR spectrum of Pd4 in CDCl₃.

2.2 HESI-MS of I2-I3, L1-L4.

Figure S24. HESI-MS of I2.

Figure S25. HESI-MS of I3.

Figure S26. HESI-MS of L1.

Figure S27. HESI-MS of L2.

Figure S28. HESI-MS of L3.

Figure S29. HESI-MS of L4.

2.3 MALDI-TOF of Complexes Ni1-Ni4 and Pd1-Pd4.

Figure S31. MALDI-TOF-MS of complex Ni2.

Figure S32. MALDI-TOF-MS of complex Ni3.

Figure S33. MALDI-TOF-MS of complex Ni4.

Figure S34. MALDI-TOF-MS of complex Pd1.

Figure S35. MALDI-TOF-MS of complex Pd2.

Figure S36. MALDI-TOF-MS of complex Pd3.

Figure S37. MALDI-TOF-MS of complex Pd4.

Figure S38. ¹H NMR spectrum of the polymer from table 1, entry 1 (d⁶-benzene, 70 °C).

Figure S39. ¹H NMR spectrum of the polymer from table 1, entry 2 (d⁶-benzene, 70 °C).

Figure S40. ¹H NMR spectrum of the polymer from table 1, entry 3 (d⁶-benzene, 70 °C).

Figure S41. ¹H NMR spectrum of the polymer from table 1, entry 4 (d⁶-benzene, 70 °C).

Figure S42. ¹H NMR spectrum of the polymer from table 1, entry 5 (d⁶-benzene, 70 °C).

Figure S43. ¹H NMR spectrum of the polymer from table 1, entry 6 (d⁶-benzene, 70 °C).

Figure S44. ¹H NMR spectrum of the polymer from table 1, entry 7 (d⁶-benzene, 70 °C).

Figure S45. ¹H NMR spectrum of the polymer from table 1, entry 8 (d⁶-benzene, 70 °C).

Figure S46. 1 H NMR spectrum of the polymer from table 1, entry 9 (d⁶-benzene, 70 °C).

Figure S47. ¹H NMR spectrum of the polymer from table 1, entry 10 (d⁶-benzene, 70 °C).

Figure S48. ¹H NMR spectrum of the polymer from table 1, entry 11 (d⁶-benzene, 70 °C).

Figure S49. ¹H NMR spectrum of the polymer from table 1, entry 12 (d⁶-benzene, 70 °C).

Figure S50. ¹H NMR spectrum of the polymer from table 1, entry 13 (d⁶-benzene, 70 °C).

Figure S51. ¹H NMR spectrum of the polymer from table 1, entry 14 (d⁶-benzene, 70 °C).

Figure S52. ¹H NMR spectrum of the polymer from table 1, entry 15 (d⁶-benzene, 70 °C).

Figure S53. ¹H NMR spectrum of the polymer from table 1, entry 16 (d⁶-benzene, 70 °C).

Figure S54. ¹H NMR spectrum of the polymer from table 2, entry 1 (CDCl₃, 20 °C).

Figure S55. ¹H NMR spectrum of the polymer from table 2, entry 2 (CDCl₃, 20 °C).

Figure S56. ¹H NMR spectrum of the polymer from table 2, entry 3 (CDCl₃, 20 °C).

Figure S57. ¹H NMR spectrum of the polymer from table 2, entry 4 (CDCl₃, 20 °C).

Figure S58. ¹H NMR spectrum of the polymer from table 2, entry 5 (CDCl₃, 20 °C).

Figure S59. ¹H NMR spectrum of the polymer from table 2, entry 6 (CDCl₃, 20 °C).

Figure S60. ¹H NMR spectrum of the polymer from table 2, entry 7 (CDCl₃, 20 °C).

Figure S61. ¹³C NMR spectrum of the polymer from table 2, entry 7 (CDCl₃, 20 °C).

Figure S62. ¹H NMR spectrum of the polymer from table 2, entry 8 (CDCl₃, 20 °C).

Figure S63. ¹³C NMR spectrum of the polymer from table 2, entry 8 (CDCl₃, 20 °C).

Figure S64. ¹H NMR spectrum of the polymer from table 3, entry 1 (CDCl₃, 20 °C).

Figure S65. ¹H NMR spectrum of the polymer from table 3, entry 2 (CDCl₃, 20 °C).

Figure S66. ¹H NMR spectrum of the polymer from table 3, entry 3 (CDCl₃, 20 °C).

Figure S67. ¹H NMR spectrum of the polymer from table 3, entry 5 (CDCl₃, 20 °C).

Figure S68. ¹H NMR spectrum of the polymer from table 3, entry 6 (CDCl₃, 20 °C).

Figure S69. ¹H NMR spectrum of the polymer from table 3, entry 7 (CDCl₃, 20 °C).

Figure S70. ¹H NMR spectrum of the polymer from table 3, entry 8 (CDCl₃, 20 °C).

Figure S71. ¹³C NMR spectrum of the polymer from table 3, entry 8 (CDCl₃, 20 °C).

2.5 DSC and GPC of Polymer and Copolymer and Time-Dependence Curves.

Figure S72. DSC of the polymer from table 1, entry 1.

Figure S73. DSC of the polymer from table 1, entry 2.

Figure S74. DSC of the polymer from table 1, entry 13.

Figure S75. DSC of the polymer from table 1, entry 14.

Figure S76. DSC of the polymer from table 1, entry 15.

Figure S77. GPC of the polymer from table 1, entry 1.

Figure S78. GPC of the polymer from table 1, entry 2.

Figure S79. GPC of the polymer from table 1, entry 3.

Figure S80. GPC of the polymer from table 1, entry 5.

Figure S81. GPC of the polymer from table 1, entry 6.

Figure S82. GPC of the polymer from table 1, entry 13.

Figure S83. GPC of the polymer from table 1, entry 14.

Figure S84. GPC of the polymer from table 1, entry 15.

Peak 1 Base Peak

	[min]	[mV]	[mol]	Mn	2,313
Peak start	8.425	0.825	19,281	Mw	3,303
Peak top	9.593		3,370	Mz	4,437
		11.671			
Peak end	10.808	2.618	549	Mz+1	5,608
				Mv	3,303
Height [mV]			9.967	Мр	3,371
Area [mV*sec]			616.388	Mz/Mw	1.344
Area% [%]			100.000	Mw/Mn	1.428
[eta]			3302.72495	Mz+1/Mw	1.698

Figure S88. GPC of the polymer from table 2, entry 4.

Peak 1 Base Peak

[min]	[mV]	[mol]	Mn	1,628
8.745	0.326		Mw	2,137
		11,574		
9.917	16.407	2,036	Mz	2,755
10.957	4.158	435	Mz+1	3,479
			Mv	2,137
		14.051	Мр	2,036
		799.384	Mz/Mw	1.289
		100.000	Mw/Mn	1.313
		2137.44377	Mz+1/Mw	1.628
	[min] 8.745 9.917 10.957	[min] [mV] 8.745 0.326 9.917 16.407 10.957 4.158	[min] [mV] [mol] 8.745 0.326 11,574 9.917 16.407 2,036 10.957 4.158 435 14.051 799.384 100.000 2137.44377 1000 1000	[min] [mV] [mol] Mn 8.745 0.326 Mw 11,574 11,574 9.917 16.407 2,036 Mz 10.957 4.158 435 Mz+1 Mv 14.051 Mp 799.384 Mz/Mw 100.000 Mw/Mn 2137.44377 Mz+1/Mw

Figure S89. GPC of the polymer from table 2, entry 5.

	[min]	[mV]	[mol]	Mn	1,339
Peak start	8.957	0.314	8,456	Mw	1,761
Peak top	10.083	14.105	1,590	Mz	2,253
Peak end	11.063	3.969	371	Mz+1	2,771
				Mv	1,761
Height [mV]			11.836	Мр	1,586
Area [mV*sec]			678.683	Mz/Mw	1.279
Area% [%]			100.000	Mw/Mn	1.315
[eta]			1760.98304	Mz+1/Mw	1.574

Figure S90. GPC of the polymer from table 2, entry 6.

[mV]

Figure S92. GPC of the polymer from table 2, entry 8.

Figure S94. GPC of the polymer from table 3, entry 4.

Figure S96. GPC of the polymer from table 3, entry 8.

Figure S97. Plot of yield versus time for Pd4 at 20 °C.

4. References

(1) Dai, S.; Zhou, S.; Zhang, W.; Chen, C. Systematic Investigations of Ligand Steric Effects on a-Diimine

Palladium Catalyzed Olefin Polymerization and Copolymerization. *Macromolecules* 2016, 49, 8855–8862.

(2) Liang, T.; Goudari, S. B.; Chen, C. A simple and versatile nickel platform for the generation of branched

high molecular weight polyolefins. Nat. Commun. 2020, 11, 1-8.

5. X-ray Crystallography

CCDC numbers of **Ni1** and **Pd1-3** are 2021535-2021538. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Table S1 Crystal data an	d structure refinement for Ni1.
Identification code	Nil
Empirical formula	C41 H42 Br2 N2 Ni
Formula weight	781. 30

Temperature/K	298(2) K	
Crystal system	Triclinic	
Space group	P-1	
a/Å	9. 3405 (8)	
b/Å	10.8596(9)	
c/Å	18.9774(17)	
α / °	75. 7240 (10)	
β/°	82. 338 (2)	
γ /°	86. 529 (3)	
Volume/Å ³	1848.1(3)	
Ζ	2	
$ ho_{calc}g/cm^3$	1. 404	
μ / mm^{-1}	2. 717	
F (000)	800	
Crystal size/mm ³	0.30 x 0.23 x 0.21	
Radiation	MoK α ($\lambda = 0.71073$)	
2⊖ range for data collection/°	2.34 to 25.02	
Index ranges	-11<=h<=9, -12<=k<=12, - 19<=1<=22	
Reflections collected	9491	
Independent reflections	6414 [R(int) = 0.0321]	
Data/restraints/paramet ers	6414 / 30 / 419	
Goodness-of-fit on F ²	1. 068	
Final R indexes [I>=2σ (I)]	R1 = 0.0416, wR2 = 0.0859	
Final R indexes [all data]	R1 = 0.0736, wR2 = 0.0910	
Largest diff. peak/hole / e Å ⁻³	0.454 and -0.557	

Table S2 Crystal data and structure refinement for Pd1.		
Identification code	Pd1	
Empirical formula	C42 H45 C1 N2 Pd	
Formula weight	719.65	
Temperature/K	298(2) K	
Crystal system	Monoclinic	
Space group	P2(1)/c	
a/Å	17. 2731 (15)	
b/Å	12. 4890 (11)	
c/Å	21. 4769 (19)	
α /°	90.00	
β/°	127.871(5)	
γ /°	90.00	
Volume/Å ³	3657.3(6)	
Ζ	4	
$ ho_{calc}g/cm^3$	1. 307	
μ / mm^{-1}	0. 611	
F (000)	1496	
Crystal size/mm ³	0.40 x 0.37 x 0.34	
Radiation	MoK α ($\lambda = 0.71073$)	
2⊖ range for data collection/°	2.50 to 25.02	
Index ranges	-11<=h<=20, -14<=k<=14, - 25<=1<=25	
Reflections collected	16849	
Independent reflections	6428 [R(int) = 0.0550]	
Data/restraints/paramet ers	6428 / 47 / 439	
Goodness-of-fit on F^2	1.028	

Final R indexes [I>=2σ (I)]	R1 = 0.0573, wR2 = 0.1051
Final R indexes [all data]	R1 = 0.1080, wR2 = 0.1179
Largest diff. peak/hole / e Å ⁻³	0.663 and -0.493

Table S3 Crystal data an	nd structure refinement for Pd2.
Identification code	Pd2
Empirical formula	C42 H41 C1 F4 N2 Pd
Formula weight	791.62
Temperature/K	298(2) K
Crystal system	Monoclinic
Space group	P2(1)/c
a/Å	9. 2300 (9)
b/Å	22.710(2)
c/Å	18. 1601 (17)
α /°	90
β/°	91. 200 (2)
γ /°	90
Volume/Å ³	3805.8(6)
Ζ	4
$ ho_{calc}g/cm^3$	1. 382
μ / mm^{-1}	0. 609
F (000)	1624
Crystal size/mm ³	0.17 x 0.10 x 0.06
Radiation	MoK α ($\lambda = 0.71073$)
2⊖ range for data collection/°	2.12 to 25.02

Index ranges	-10<=h<=10, -26<=k<=23, - 13<=1<=21
Reflections collected	18471
Independent reflections	6696 [R(int) = 0.1418]
Data/restraints/paramet ers	6696 / 0 / 452
Goodness-of-fit on F ²	0. 988
Final R indexes [I>=2σ (I)]	R1 = 0.0671, wR2 = 0.0925
Final R indexes [all data]	R1 = 0.1684, wR2 = 0.1104
Largest diff. peak/hole / e Å ⁻³	0.518 and -0.653

Table S4 Crystal data an	d structure refinement for Pd3.
Identification code	Pd3
Empirical formula	C50 H61 C1 N2 Pd
Formula weight	831.86
Temperature/K	298(2) K
Crystal system	Triclinic
Space group	P-1
a/Å	12. 9300 (11)
b/Å	14.8499(13)
c/Å	15. 1301 (14)
α / °	105.570(3)
β/°	113.860(5)
$\gamma / ^{\circ}$	103. 220 (3)

Volume/Å ³	2364.4(4)
Ζ	2
$\rho_{calc}g/cm^3$	1. 168
μ / mm^{-1}	0. 481
F (000)	876
Crystal size/mm ³	0. 40 x 0. 35 x 0. 34
Radiation	MoK α ($\lambda = 0.71073$)
2⊖ range for data collection/°	1.76 to 25.02
Index ranges	-14<=h<=15, -17<=k<=17, - 18<=1<=17
Reflections collected	11969
Independent reflections	8209 [R(int) = 0.0391]
Data/restraints/paramet ers	8209 / 33 / 488
Goodness-of-fit on F^2	1.097
Final R indexes [I>=2σ (I)]	R1 = 0.0590, wR2 = 0.1715
Final R indexes [all data]	R1 = 0.0754, wR2 = 0.1827
Largest diff. peak/hole / e Å ⁻³	0.990 and -1.094