Supporting Information

Mechanism and Application of Surface-Initiated, Zn⁰-Mediated ATRP

Rebecca Faggion Albers,^{a,b,c,d} Wenqing Yan,^b Matteo Romio,^{b,c} Edson R. Leite,^{d,e}

Nicholas D. Spencer,^b Krzysztof Matyjaszewski,^f Edmondo M. Benetti^{b,c}*

a) Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland.

b) Laboratory of Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland. Email: edmondo.benetti@mat.ethz.ch

c) Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.

d) Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.

e) Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil.

f) Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, USA.

Figure S1. Scanning electron micrographs (SEM) highlighting the formation of Zn^0 nano/microparticles after the polishing process.

Figure S2. SI-Zn⁰-ATRP of OEGMA using Fe-based catalyst. Fe^{III}Br₃/tertbutylammonium bromide (TBABr) is readily reduced to Fe^{II}Br₂/TBABr activators by the Zn⁰ surface, triggering the growth of more than 30 nm-thick POEGMA brushes in just 60 min of reaction.

Figure S3. (a) When SI-Zn⁰-ATRP was performed in the absence of Cu^{II}Br₂ and ligand, by sandwiching a 50% OEGMA in DMF (v/v) between an initiator-bearing substrate (reported in the picture) and a polished Zn⁰ plate, no appreciable growth of brushes was recorded, with the dry thickness of polymer layer < 5 nm. (b) When SI-Zn⁰-ATRP was carried out using 50% OEGMA in DMF (v/v) and 10 mM Cu^{II}Br₂/TPMA but without polishing the Zn⁰ plate a relevant brush growth was not recorded, with average polymer thickness < 5 nm, and just few areas presenting very inhomogeneous growth. (c,d) Re-initiation efficiency was demonstrated by first growing a 18 ± 2 nm-thick POEGMA brush (c), using 50% OEGMA in DMF + 10 mM Cu^{II}Br₂/TPMA and carrying out the polymerization for 5 min. Later on, the same substrate was subjected to a freshly prepared reaction solution (50% OEGMA in DMF + 10 mM Cu^{II}Br₂/TPMA) while carrying out polymerization for further 5 min (d). The final POEGMA brush-thickness resulted 35 ± 3 nm, reaching nearly twice the value recorded for the first "brush block".