Electronic Supplementary Information

Reversible Deactivation Radical (Co)Polymerization of Dimethyl Methylene Oxazolidinone towards Responsive Vicinal Aminoalcohol-Containing Copolymers.

Zhuoqun Wang, Christophe Detrembleur and Antoine Debuigne*

Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium; email: <u>adebuigne@uliege.be</u>

Figure S1. ¹H NMR (**A**) and ¹³C NMR (**B**) spectra of 4,4-dimethyl-5-methyleneoxazolidin-2one (DMOx) in CDCl₃.

Figure S2. ¹H NMR of P(DMOx-*co*-VAc) ($F_{DMOx} = 0.08$; entry 3 Table 2) in CDCl₃.

Figure S3. COSY (A) and HSQC (B) spectra in CDCl₃ of P(DMOx-*co*-VAc) ($F_{DMOx} = 0.08$) prepared by conventional radical polymerization with V70 as initiator (Table 2, entry 3).

Figure S4. ¹H NMR (A), COSY (B) and HSQC (C) spectra in CDCl₃ of the P(DMOx-*co*-VAc) ($F_{\text{DMOx}} = 0.10$) prepared by OMRP (Table 3, entry 1).

Figure S5. (A) Time dependence of $\ln[M]_0/[M]$ and (B) evolution of M_n (full symbols) and \overline{D} (hollow symbols) on the total monomer conversion for the OMRP ($f^{\circ}_{DMOx} = 0.4$, [DMOx]/[VAc]/[RCo]=200/300/1) at 40 °C (\blacksquare) and 50 °C (\blacktriangle).

Figure S6. Overlay of SEC traces for the OMRP of DMOx and VAc performed at 50 °C with f°_{DMOx} equal to (A) 0.2 and (B) 0.4 (Table 3, entries 3 and 4).

Entry	Feed composition		Time	Conv.	E area b
	f° DMOx	f° VAc	(h)	^a (%)	I' DMOx "
1	0.19	0.81	2	12	0.12
2	0.31	0.69	2	10	0.19
3	0.47	0.53	2	8	0.26
4	0.51	0.49	2	7	0.29
5	0.59	0.41	3	5	0.31

Table S1. Data used for the determination of the reactivity ratios for the OMRP of DMOx and VAc at 40 °C.

Conditions: bulk polymerization, 40 °C, [comonomers] $_0/[RCo]_0 = 500/1$, ^a total monomer conversion determined by ¹H NMR in CDCl₃. ^b Determined by ¹H NMR in CDCl₃ after purification of the copolymers.

Figure S7. ¹H NMR (A) and ¹³C NMR (B) spectra of methyl (ethoxycarbonothioyl)sulfanyl acetate in CDCl₃.

Figure S8. ¹H NMR (**A**), COSY (**B**) and HSQC (**C**) spectra in CDCl₃ of the P(DMOx-*co*-VAc) ($F_{\text{DMOx}} = 0.12$) prepared by RAFT (Table 4, entry 2).

Figure S9. (A) The total monomer conversion dependence of M_n (full symbols) and D (hollow symbols) and (B) Time dependence of $\ln[M]_0/[M]$ for the RAFT of DMOx and VAc ([comonomers]/[Xanthate]/[AIBN] = 150/1/0.2) with different initial rate: $f_{DMOx}^{\circ} = 0.2$ (\blacksquare), 0.4 (\bullet), 0.6 (\blacktriangle).

Figure S10. Overlay of SEC chromatorgrams for the RAFT of DMOx/VAc using (A) [DMOx]₀/[VAc]₀/[xanthate]₀/[AIBN]₀ = 30/120/1/0.2 (Table 4, entry 2), **(B)** $[DMOx]_0/[VAc]_0/[xanthate]_0/[AIBN]_0 =$ 60/90/1/0.2 (Table 4, (C) entry 3), $[DMOx]_0/[VAc]_0/[xanthate]_0/[AIBN]_0 = 90/60/1/0.2$ (Table 4, entry 4).

Entry	Feed composition		Time	Conv.	E pro b
	f° DMOx	f°_{VAc}	(h)	^a (%)	F DMOx ~
1	0.12	0.88	1	5	0.06
2	0.23	0.77	2	6	0.12
3	0.36	0.64	3	6	0.20
4	0.49	0.51	3	8	0.28
5	0.60	0.40	4	6	0.39

Table S2. Data used for the determination of the reactivity ratios for the RAFT of DMOx and VAc at 65 °C.

Conditions: bulk polymerization, 65 °C, [comonomers]/[Xanthate]/[AIBN] = 150/1/0.2, ^a total monomer conversion determined by ¹H NMR in CDCl₃. ^b Determined by ¹H NMR in CDCl₃ after purification of the copolymers.

Figure S11. Overlay of ¹³C NMR spectra of (A) P(DMOx-*co*-VAc) (M_n : 10000 g/mol, F_{DMOx} = 0.24) in DMSO-d₆, (B) P(DMOx-*co*-VA) in DMSO-d₆ and (C) P(AMBO-*co*-VA) in D₂O.

Figure S12. HSQC spectra of (A) P(DMOx-co-VAc) in DMSO-d₆, (B) P(DMOx-co-VA) in DMSO-d₆ and (C) P(AMBO-co-VA) in D₂O.

Figure S13. Differential scanning calorimetry (DSC) analyses of P(DMOx-*co*-VAc) (M_n : 10000 g/mol, F_{DMOx} = 0.24) and the corresponding P(DMOx-*co*-VA) and P(AMBO-*co*-VA).