Electronic Supplementary Information

Reversible Deactivation Radical (Co)Polymerization of Dimethyl Methylene Oxazolidinone towards Responsive Vicinal Aminoalcohol-Containing Copolymers.

Zhuoqun Wang, Christophe Detrembleur and Antoine Debuigne*

Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Allée de la Chimie B6A, 4000 Liège, Belgium; email: adebuigne@uliege.be

Figure S1. ${ }^{1} \mathrm{H}$ NMR (A) and ${ }^{13} \mathrm{C}$ NMR (B) spectra of 4,4-dimethyl-5-methyleneoxazolidin-2one (DMOx) in CDCl_{3}.

Figure S2. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{P}(\mathrm{DMOx}-c o-\mathrm{VAc})\left(F_{\mathrm{DMOx}}=0.08\right.$; entry 3 Table 2$)$ in CDCl_{3}.

Figure S3. $\operatorname{COSY}(\mathbf{A})$ and $\operatorname{HSQC}(\mathbf{B})$ spectra in CDCl_{3} of $\mathrm{P}(\mathrm{DMOx}-\mathrm{co}-\mathrm{VAc})\left(F_{\mathrm{DMOx}}=0.08\right)$ prepared by conventional radical polymerization with V70 as initiator (Table 2, entry 3).

Figure S4. ${ }^{1} \mathrm{H}$ NMR (A), COSY (B) and HSQC (C) spectra in CDCl_{3} of the P (DMOx-coVAc) $\left(F_{\text {DMOx }}=0.10\right)$ prepared by OMRP $($ Table 3, entry 1$)$.

Figure S5. (A) Time dependence of $\ln [\mathrm{M}]_{0} /[\mathrm{M}]$ and (B) evolution of M_{n} (full symbols) and \doteq (hollow symbols) on the total monomer conversion for the $\operatorname{OMRP}\left(f^{\circ} \mathrm{DMOx}=0.4\right.$, $[\mathrm{DMOx}] /[\mathrm{VAc}] /[\mathrm{RCo}]=200 / 300 / 1)$ at $40^{\circ} \mathrm{C}(\boldsymbol{\square})$ and $50^{\circ} \mathrm{C}(\boldsymbol{\Delta})$.
(A)

121314151617181920212223
Elution time (min)
(B)
 $\begin{array}{lllllllll}2 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\ 21 & 22 & 23\end{array}$ Elution Time (min)

Figure S6. Overlay of SEC traces for the OMRP of DMOx and VAc performed at $50^{\circ} \mathrm{C}$ with f° DMOx equal to (A) 0.2 and (B) 0.4 (Table 3, entries 3 and 4)

Table S1. Data used for the determination of the reactivity ratios for the OMRP of DMOx and VAc at $40^{\circ} \mathrm{C}$.

Entry	Feed composition		Time	Conv.	$\boldsymbol{F}_{\text {DMOx }}{ }^{\mathbf{b}}$
	$\boldsymbol{f}^{\circ}{ }^{\circ}{ }^{\mathbf{D M O x}}$	$\boldsymbol{f}^{\circ}{ }_{\text {VAc }}$	(h)	${ }^{\mathbf{a}} \mathbf{(\%)}$	
	0.19	0.81	2	12	0.12
2	0.31	0.69	2	10	0.19
3	0.47	0.53	2	8	0.26
4	0.51	0.49	2	7	0.29
5	0.59	0.41	3	5	0.31

Conditions: bulk polymerization, $40{ }^{\circ} \mathrm{C}$, [comonomers $]_{0} /[\mathrm{RCo}]_{0}=500 / 1$, a total monomer conversion determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} after purification of the copolymers.
(A)

(B)

Figure S7. ${ }^{1} \mathrm{H}$ NMR (A) and ${ }^{13} \mathrm{C}$ NMR (B) spectra of methyl (ethoxycarbonothioyl)sulfanyl acetate in CDCl_{3}.
(A)

(B)

(C)

Figure S8. $\quad{ }^{1} \mathrm{H}$ NMR (A), COSY (B) and $\mathrm{HSQC}(\mathbf{C})$ spectra in CDCl_{3} of the $\mathrm{P}($ DMOx-coVAc) $\left(F_{\text {dmox }}=0.12\right)$ prepared by RAFT (Table 4, entry 2$)$.

(B)

Figure S9. (A) The total monomer conversion dependence of M_{n} (full symbols) and \doteq (hollow symbols) and (B) Time dependence of $\ln [\mathrm{M}]_{0} /[\mathrm{M}]$ for the RAFT of DMOx and VAc ([comonomers]/[Xanthate]/[AIBN] $=150 / 1 / 0.2)$ with different initial rate: $f_{\text {DMOx }}^{\circ}=0.2(■), 0.4$ (•), 0.6 ($\mathbf{\Delta}$).

Figure S10. Overlay of SEC chromatorgrams for the RAFT of DMOx/VAc using (A)
$[\mathrm{DMOx}]_{0} /[\mathrm{VAc}]_{0} /[\text { xanthate }]_{0} /[\mathrm{AIBN}]_{0}=30 / 120 / 1 / 0.2$ (Table 4, entry 2), (B) $[\text { DMOx }]_{0} /[\mathrm{VAc}]_{0} /[\text { xanthate }]_{0} /[\mathrm{AIBN}]_{0}=60 / 90 / 1 / 0.2 \quad$ (Table 4 , entry 3), (C) $[\mathrm{DMOx}]_{0} /[\mathrm{VAc}]_{0} /[\text { xanthate }]_{0} /[\mathrm{AIBN}]_{0}=90 / 60 / 1 / 0.2($ Table 4 , entry 4$)$.

Table S2. Data used for the determination of the reactivity ratios for the RAFT of DMOx and VAc at $65^{\circ} \mathrm{C}$.

Entry	Feed composition		Time (h)	$\begin{aligned} & \text { Conv. } \\ & { }^{\mathrm{a}}(\%) \end{aligned}$	F dmox $^{\text {b }}$
	f° DMOx	$f^{\circ}{ }^{\circ}{ }^{\text {ac }}$			
1	0.12	0.88	1	5	0.06
2	0.23	0.77	2	6	0.12
3	0.36	0.64	3	6	0.20
4	0.49	0.51	3	8	0.28
5	0.60	0.40	4	6	0.39

Conditions: bulk polymerization, $65^{\circ} \mathrm{C}$, [comonomers]/[Xanthate]/[AIBN] $=150 / 1 / 0.2,{ }^{\text {a }}$ total monomer conversion determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} after purification of the copolymers.

Figure S11. Overlay of ${ }^{13} \mathrm{C}$ NMR spectra of (A) P(DMOx-co-VAc) $\left(M_{\mathrm{n}}: 10000 \mathrm{~g} / \mathrm{mol}, F_{\mathrm{DMOx}}\right.$ $=0.24$) in DMSO- d_{6}, (B) P(DMOx-co-VA) in DMSO- d_{6} and (C) $\mathrm{P}(\mathrm{AMBO}-c o-\mathrm{VA})$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S12. HSQC spectra of (A) $\mathrm{P}(\mathrm{DMOx}-c o-\mathrm{VAc})$ in DMSO_{6}, (B) $\mathrm{P}(\mathrm{DMOx}-c o-\mathrm{VA})$ in DMSO- d_{6} and (C) $\mathrm{P}(\mathrm{AMBO}-c o-\mathrm{VA})$ in $\mathrm{D}_{2} \mathrm{O}$.

Figure S13. Differential scanning calorimetry (DSC) analyses of $\mathrm{P}(\mathrm{DMOx}-\mathrm{co}-\mathrm{VAc})\left(M_{\mathrm{n}}\right.$: $\left.10000 \mathrm{~g} / \mathrm{mol}, F_{\mathrm{DMOx}}=0.24\right)$ and the corresponding $\mathrm{P}(\mathrm{DMOx}-c o-\mathrm{VA})$ and $\mathrm{P}(\mathrm{AMBO}-\mathrm{co}-\mathrm{VA})$.

