Supporting Information

Polymerization-Induced Self-Assembly via RAFT in Emulsion: Effect of Z-Group on the Nucleation Step

Thiago R. Guimarães,¹ Yuen L. Bong,¹ Steven W. Thompson,¹ Graeme Moad,² Sébastien Perrier^{3,4,5} and Per B. Zetterlund^{1,*}

¹ Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.

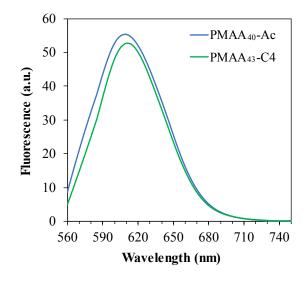
² CSIRO Manufacturing Flagship, Bag 10, Clayton South, VIC 3169, Australia.

³ Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.

⁴ Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK

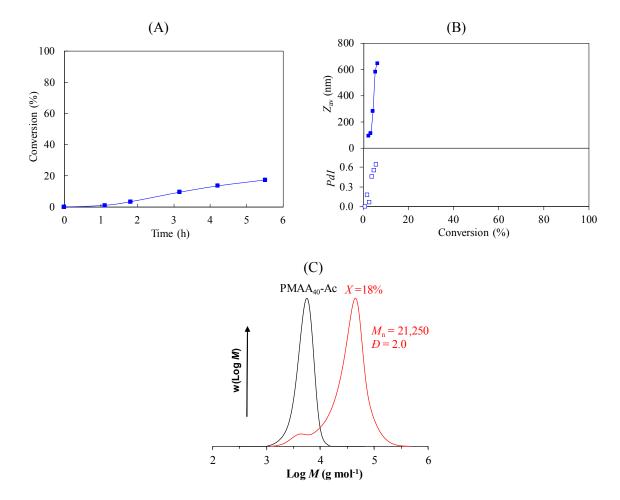
⁵ Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia

Contents


1.1.	Characterization of hydrophilic macroRAFT	2
1.2.	Additional results for PISA polymerization	2

1.1. Synthesis and characterization of hydrophilic macroRAFT agents

Table ST	– Synthesis	of hydrophilic	macroRAFT	agents	via solution	polymerization	using	RAFT
agents with	h different Z-	-groups. ^a						


RAFT agent	[Mon] (mol L ⁻¹)	[Mon]/ [RAFT]	[RAFT]/ [I]	X (%)/ t (h) ^b	$M_{ m n,th}^{ m c}$	$M_{ m n}/{oldsymbol{\mathcal{D}}}^{ m d}$	<i>L (%)</i> e
RAFT1	0.9	24	34	99/22	2380	2350/1.14	96.6
RAFT1	1.0	44	39	99/22	4050	3830/1.13	97.2
RAFT2	1.0	43	40	98/24	3980	3930/1.13	96.8
RAFT3	2.4	50	20	77/6	3712	4510/1.22	95.1
RAFT1	1.0	42	40	100/24	3320	2860/1.10	98.5
RAFT4	1.8	40	38	99/22	3130	2940/1.10	98.5
RAFT5	3.0	48	20	96/6	3690	3370/1.15	97.5
	agent RAFT1 RAFT1 RAFT2 RAFT3 RAFT1 RAFT4	agent (mol L ⁻¹) RAFT1 0.9 RAFT1 1.0 RAFT2 1.0 RAFT3 2.4 RAFT1 1.0 RAFT3 1.0 RAFT4 1.0	agent (mol L ⁻¹) [RAFT] RAFT1 0.9 24 RAFT1 1.0 44 RAFT2 1.0 43 RAFT3 2.4 50 RAFT1 1.0 42 RAFT1 1.0 42 RAFT1 1.8 40	agent(mol L-1)[RAFT][I]RAFT10.92434RAFT11.04439RAFT21.04340RAFT32.45020RAFT11.04240RAFT41.84038	agent(mol L-1)[RAFT][I]t (h)bRAFT10.9243499/22RAFT11.0443999/22RAFT21.0434098/24RAFT32.4502077/6RAFT11.04240100/24RAFT41.8403899/22	agent(mol L-1)[RAFT][I]t (h)bMn,th°RAFT10.9243499/222380RAFT11.0443999/224050RAFT21.0434098/243980RAFT32.4502077/63712RAFT11.04240100/243320RAFT41.8403899/223130	agent(mol L-1)[RAFT][I]t (h)b $M_{n,th}c$ $M_n/\mathcal{D}d$ RAFT10.9243499/2223802350/1.14RAFT11.0443999/2240503830/1.13RAFT21.0434098/2439803930/1.13RAFT32.4502077/637124510/1.22RAFT11.04240100/2433202860/1.10RAFT41.8403899/2231302940/1.10

^aT = 80°C; Volume = 10-20 mL. ^bConversion by ¹H NMR. ^cTheoretical M_n calculated according to equation 2. ^dExperimental number-average molar mass and dispersity determined either by SEC in THF based on conventional calibration using PMMA standards. ^eLivingness calculated according to equation 2. Water was used as solvent except for ^f performed in dioxane.

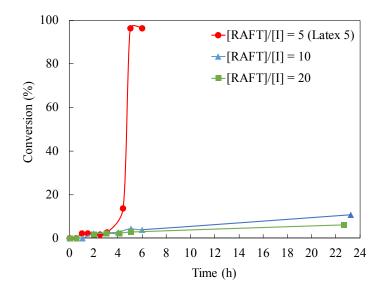


Figure S1 – Fluorescence spectra of PMAA-based macroRAFTs in aqueous solution at pH 3 using Nile red as solvachromatic dye with excitation wavelength at 550 nm. The excitation bandwidth was set at 3.0 nm and the emission bandwidth at 1.5 nm.

1.2. Additional PISA results

Figure S2 –PISA of styrene using PMAA₄₀-Ac macroRAFT and ACPA as initiator. (A) Conversion-time data plot, (B) intensity-mean average diameter (Z_{av}) and dispersity index (PdI) and (C) THF-SEC traces based on PS calibration curve. The formulation was based on Latex 2 but targeting a higher DP of 1200 and using ACPA as initiator. SC = 20%; T = 80°C; [RAFT]/[I] = 5; [Mon]/[RAFT] =1200; pH₀ = 2.5. [NaHCO₃]/[ACPA] = 3.5 was used to dissolve ACPA in water.

Figure S3 – Conversion-time data for PISA of styrene using PAA_{43} -Ac macroRAFT at different [RAFT]/[I] ratios. The formulations were based on Latex 5 but using a lower concentration of initiator at [RAFT]/[I] = 10 and 20.