Supporting Information for

Enzyme-responsive polymeric micelles with fluorescence fabricated through aggregation-induced copolymer selfassembly for anticancer drug delivery

Ke Yan[#], Shujing Zhang[†], Kun Zhang[†], Yalei Miao[#], Yudian Qiu[#], Panke Zhang^{*#}, Xu Jia[§], Xubo Zhao*#

[#]Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

[†]School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.

[§]School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China.

*Corresponding author. E-mail: xbz2016@zzu.edu.cn

This PDF file includes:

S1 Experimental Section

S1.1 Synthesis of CH₃O-PEG₄₃-Br

S1.2 Synthesis of CH₃O-PEG₄₃-*b*-PtBA₅₅

S1.3 Hydrolysis of CH₃O-PEG₄₃-*b*-P*t*BA₅₅

S2 Supplementary Figures

Fig. S1 Synthetic process of the CH₃O-PEG₄₃-*b*-PAA₅₅ copolymer.

Fig. S2 (A and B) ¹H NMR spectra of CH₃O-PEG₄₃-OH, CH₃O-PEG₄₃-Br, and CH₃O-PEG₄₃-b-PtBA₅₅, CH₃O-PEG₄₃-b-PAA₅₅ and CH₃O-PEG₄₃-b-P(AA₂₀-g-TPE₃₅). (C and D) FT-IR spectra of CH₃O-PEG₄₃-OH, CH₃O-PEG₄₃-Br, and CH₃O-PEG₄₃-b-PtBA₅₅, CH₃O-PEG₄₃-b-PAA₅₅, CH₃O-PEG₄₃-*b*-P(AA₂₀-*g*-TPE₃₅).

Fig. S3 AFM of CH₃O-PEG₄₃-*b*-P(AA₂₀-*g*-TPE₃₅).

Fig. S4 ¹H NMR spectra of CH₃O-PEG₄₃-b-P(AA₃₉-g-TPE₁₆), CH₃O-PEG₄₃-b-P(AA₂₀-g-TPE₃₅), and CH₃O-PEG₄₃-*b*-P(AA₁₃-*g*-TPE₄₂).

Fig. S5 Photoluminescence spectra of CH₃O-PEG₄₃-b-P(AA₃₉-g-TPE₁₆), CH₃O-PEG₄₃-b-P(AA₂₀-

g-TPE₃₅), and CH₃O-PEG₄₃-b-P(AA₁₃-g-TPE₄₂) in water. Additionally, the insets are the

photographs of CH₃O-PEG₄₃-b-P(AA₃₉-g-TPE₁₆), CH₃O-PEG₄₃-b-P(AA₂₀-g-TPE₃₅), and CH₃O-

PEG₄₃-*b*-P(AA₁₃-*g*-TPE₄₂) under UV lamp at 365 nm.

Fig. S6 CMCs of different polymeric micelles.

Fig. S7 Structural stability of CH₃O-PEG₄₃-b-P(AA₂₀-g-TPE₃₅) in PBS (A) and DMEM (B) with

FBS (10%, v/v) for 5 days.

Fig. S8 TEM of CH₃O-PEG₄₃-*b*-PAA₅₅ in water.

Fig. S9 The DOX release of DOX@CH_3O-PEG_{43}-b-P(AA_{20}-g-TPE_{35}) at pH 5.0 in the presence ofesterase (200 U/L) was recorded by using fluorescence spectra. Additionally, 485 nm of excitingwavelengthwasadopted.

S1 Experimental Section

S1.1 Synthesis of CH₃O-PEG₄₃-Br

After 20 g of CH₃O-PEG₄₃-OH was dissolved in 150 mL of toluene, approximately 40 mL of toluene with traces of water was removed from the mixture by zeotropic distillation at reduced pressure. Then 2.500 mL of Triethylamine was added into the solution at 0 °C. Subsequently, 2.470 mL of 2-bromoisobutyryl bromide was added dropwise via a constant pressure funnel during 40 min with magnetic stirring, and the reaction was performed with moderate stirring overnight at room temperature. After most toluene was removed at reduced pressure, the product was precipitated in excess cold ether. The precipitate was dried under vacuum, dissolved in 20 mL of pH 8-9 NaHCO₃ aqueous solution, and extracted with CH₂Cl₂. Subsequently, the organic phase was gathered and dried over MgSO₄. Finally, CH₂Cl₂ was removed completely at reduced pressure to obtain the resultant macroinitiator (CH₃O-PEG₄₃-Br).

S1.2 Synthesis of CH₃O-PEG₄₃-b-PtBA₅₅

CH₃O-PEG₄₃-*b*-P*t*BA₅₅ was synthesized via the ATRP of *tert*-butyl acrylate (*t*BA) with the macroinitiator CH₃O-PEG₄₃-Br. An amount of 1.830 g (0.880 mM) of CH₃O-PEG₄₃-Br was dissolved in 6 mL of anhydrous tetrahydrofuran (THF). After the mixture was gassed and degassed under N₂, 0.173 g (0.880 mM) of *N*,*N*,*N''*,*N''*-pentamethyl diethylenetriamine and 9.580 mL of *t*BA were charged under degassing by freeze-pump-thaw in a N₂ atmosphere, followed by adding 0.127 g (0.880 mM) of CuBr and then degassing. Subsequently, ATRP was carried out at 45 °C for 8 h with the conversion of *t*BA of 100% from the information on ¹H NMR analysis. The copper catalyst in the resultant solution was removed with an alumina column, after dilution with THF. The block copolymer CH₃O-PEG₄₃-*b*-P*t*BA₅₅ was precipitated in cold ether and dried in vacuum overnight at room temperature.

S1.3 Hydrolysis of CH₃O-PEG₄₃-b-PtBA₅₅

The triblock copolymer was dissolved in 25 mL of CH_2Cl_2 , and 4 mL of TFA was added and stirred at room temperature for 24 h. Most of the CH_2Cl_2 and TFA were removed at reduced pressure by a S3/S7

rotary evaporator. The hydrolytic copolymers of CH_3O-PEG_{43} -*b*-PAA₅₅ were obtained by lyophilization for 6 h.

S2 Supplementary Figures

Fig. S1 Synthetic process of the CH₃O-PEG₄₃-*b*-PAA₅₅ copolymer.

Fig. S2 (A and B) ¹H NMR spectra of CH₃O-PEG₄₃-OH, CH₃O-PEG₄₃-Br, and CH₃O-PEG₄₃-*b*-PtBA₅₅, CH₃O-PEG₄₃-*b*-PAA₅₅ and CH₃O-PEG₄₃-*b*-P(AA₂₀-*g*-TPE₃₅). (C and D) FT-IR spectra of CH₃O-PEG₄₃-OH, CH₃O-PEG₄₃-Br, and CH₃O-PEG₄₃-*b*-PtBA₅₅, CH₃O-PEG₄₃-*b*-PAA₅₅, CH₃O-PEG₄₃-*b*-PtBA₅₅, CH₃O-PEG₄₃-*b*-PAA₅₅, CH₃O-PEG₄₃-*b*-PtBA₅₅, CH₃O-PtBA₅₅, CH₃O-P

Fig. S3 AFM of CH₃O-PEG₄₃-*b*-P(AA₂₀-*g*-TPE₃₅).

Fig. S4 ¹H NMR spectra of CH₃O-PEG₄₃-*b*-P(AA₃₉-*g*-TPE₁₆), CH₃O-PEG₄₃-*b*-P(AA₂₀-*g*-TPE₃₅), and CH₃O-PEG₄₃-*b*-P(AA₁₃-*g*-TPE₄₂).

Fig. S5 Photoluminescence spectra of CH_3O-PEG_{43} -*b*-P(AA₃₉-*g*-TPE₁₆), CH_3O-PEG_{43} -*b*-P(AA₂₀-*g*-TPE₃₅), and CH_3O-PEG_{43} -*b*-P(AA₁₃-*g*-TPE₄₂) in water. Additionally, the insets are the

photographs of CH₃O-PEG₄₃-*b*-P(AA₃₉-*g*-TPE₁₆), CH₃O-PEG₄₃-*b*-P(AA₂₀-*g*-TPE₃₅), and CH₃O-PEG₄₃-*b*-P(AA₁₃-*g*-TPE₄₂) under UV lamp at 365 nm.

Fig. S6 CMCs of different polymeric micelles.

Fig. S7 Structural stability of CH_3O-PEG_{43} -*b*-P(AA_{20} -*g*-TPE₃₅) in PBS (A) and DMEM (B) with FBS (10%, v/v) for 5 days.

Fig. S8 TEM of CH₃O-PEG₄₃-*b*-PAA₅₅ in water.

Fig. S9 The DOX release of DOX@CH₃O-PEG₄₃-*b*-P(AA₂₀-*g*-TPE₃₅) at pH 5.0 in the presence of esterase (200 U/L) was recorded by using fluorescence spectra. Additionally, 485 nm of exciting wavelength was adopted.