Supporting information

Poly(ionic liquid)s with Branched Side Chains: Polymer Design

for Breaking Conventional Record of Ionic Conductivity

Taichi Ikeda*

Research Center for Functional Materials, National Institute for Materials Science,

1-1 Namiki Tsukuba Ibaraki, 305-0044, Japan

E-mail: IKEDA.Taichi@nims.go.jp

Table of contents

1.1.	Synthesis of di-branched cationic alkyne derivative	S2
1.2.	¹ H and ¹³ C NMR spectra of di-branched derivatives	S5
2.1.	Synthesis of tri-branched cationic alkyne derivative	S11
2.2.	¹ H and ¹³ C NMR spectra of tri-branched derivatives	S16
3.	IR spectra of GAP and cationic GTPs	S22
4.	¹ H NMR spetra of cationic GTPs	S22
5.	SEC data	S23
6.	DSC data	S23
7.	TGA data	S24
8.	Impedance data	S25
9.	References	S28

1.1. Synthesis of di-branched cationic alkyne derivative

Scheme S1. Synthesis of di-branched cationic alkyne derivatives

OH-dEG3-THP: THP-protected triethylene glycol^{S1} (12.0 g, 51.2 mmol) was dissolved in dry THF (40 mL). NaH (2.2 g, 60 wt% in mineral oil) was added portionwise with stirring (*Caution: Careful for hydrogen and heat generation*). The reaction mixture was stirred at room temperature for 30 min under N₂ atmosphere. After adding epichlorohydrin (1.8 mL, 23 mmol), the reaction mixture was stirred at 60 °C for 24 h. After cooling to room temperature, CH₂Cl₂ (200 mL) was added. The organic solution and 0.1 N NaHCO₃ aqueous solution (100 mL) were shacked with a separation funnel. The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂; Hexane/Acetone = 1/1). Yield: 6.5 g (54 %). ¹H NMR (400 MHz, CDCl₃): δ = 1.45–1.90 (m, 12H), 3.20 (d, J = 4.4 Hz, 1H), 3.45–3.73 (m, 28H), 3.80–3.90 (m, 4H), 3.96 (m, 1H), 4.63 (t, J = 3.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ =19.6, 25.6, 30.7, 62.4, 66.8, 69.5, 70.6, 70.7, 70.8, 70.9, 72.7, 99.1.

Alkyne-dEG3-THP: OH-dEG3-THP (5.2 g, 10 mmol) was dissolved in dry THF (20 mL). NaH (0.45 g, 60 wt% in mineral oil) was added portionwise with stirring (*Caution: Careful for hydrogen and heat generation*). The reaction mixture was stirred at room temperature for 30 min under N₂ atmosphere. After adding propargyl bromide (1.2 mL, 9.2 M in toluene), the reaction mixture was stirred at room temperature for 3 h. After adding water (100 mL), the product was extracted by ether (100 mL × 2). The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, Hexane/DCM = 3/2). Yield: 5.2 g (93 %). ¹H NMR (400 MHz, CDCl₃): δ = 1.45–1.90 (m, 12H), 2.41 (t, J = 2.4 Hz, 1H), 3.45–3.73 (m, 28H), 3.80–3.90 (m, 5H), 4.33 (d, J = 2.4 Hz, 2H), 4.62 (t, J = 3.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 19.6, 25.5, 30.7, 57.8, 62.3, 66.8, 70.7, 70.8, 71.0, 71.5, 74.3, 80.4, 99.1.

Alkyne-dEG3-OH: Alkyne-dEG3-THP (5.0 g, 8.9 mmol) was dissolved in MeOH (200 mL). After adding PPTS (0.25 g, 1.0 mmol), the reaction mixture was heated under reflux at 70 °C for 16 h. The solvent was removed by evaporation. The residue was directly subjected to column chromatography (SiO₂, DCM/MeOH = 9/1). Yield: 3.0 g (85 %). ¹H NMR (400 MHz, CDCl₃): δ = 2.41 (t, J = 2.4 Hz, 1H), 2.87 (br, 2H), 3.52–3.75 (m, 28H), 3.87 (m, 1H), 4.32 (d, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 57.8, 61.8, 70.5, 70.6, 70.8, 70.9, 71.3, 72.7, 74.3, 80.4.

Alkyne-dEG3-Ts: Alkyne-dEG3-OH (2.5 g, 6.3 mmol), TEA (2.5 mL, 18 mmol), and DMAP (0.12 g, 1 mmol) were dissolved in dry CH₂Cl₂ (30 mL). After adding TsCl (3.0 g, 16 mmol), the reaction mixture was stirred at room temperature for 16 min under N₂ atmosphere. After adding CH₂Cl₂ (200 mL), the organic solution and 0.1 N HCl aqueous solution (100 mL) were shacked with a separation funnel. The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, Hexane/AcOEt = 1/4). Yield: 4.2 g (95 %). ¹H NMR (400 MHz, CDCl₃): δ = 2.40 (t, J = 2.4 Hz, 1H), 2.43 (s, 6H), 3.50–3.64 (m, 20H), 3.67 (t, J = 4.8 Hz, 4H), 3.85 (m, 1H), 4.15 (t, J = 4.8 Hz, 4H), 4.31 (d, J = 2.4 Hz, 2H), 7.33 (d, J = 7.6 Hz, 4H), 7.78 (d, J = 7.7 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃): δ = 21.8, 57.8, 68.8, 69.4, 70.6, 70.9, 71.0, 71.4, 74.3, 76.7, 80.4, 128.1, 129.9, 133.1, 144.9.

Alkyne-dEG3-I: Alkyne-dEG3-Ts (4.0 g, 5.7 mmol) and NaI (8.6 g, 57 mmol) were mixed in acetone (40 mL). The reaction mixture was heated under reflux at 60 °C for 60 h. After evaporation, the residue was dissolved in water (100 mL). The product was extracted by diethyl ether (100 mL × 2). The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, Hexane/AcOEt = 1/4). Yield: 3.2 g (92 %). ¹H NMR (400 MHz, CDCl₃): δ = 2.41 (t, J = 2.4 Hz, 1H), 3.26 (t, J = 4.8 Hz, 4H), 3.54–3.68 (m, 20H), 3.75 (t, J = 4.8 Hz, 4H), 3.87 (m, 1H), 4.33 (d, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 3.1, 57.9, 70.4, 70.8, 71.0, 71.5, 72.1, 74.3, 76.8, 80.4.

dEG3-EtIm·NTf₂: **Alkyne-dEG3-I** (1.5 g, 2.4 mmol) and EtIm (2.3 mL, 24 mmol) were mixed. After 10 min N₂ bubbling of the solution, the reaction mixture was stirred for 72h at 100 °C under N₂ atmosphere. The reaction mixture was diluted by distilled water (150 mL). The aqueous solution was washed with CH₂Cl₂ (100 mL × 4) and diethyl ether (100 mL × 2). Li·NTf₂ aqueous solution (10.0 g/10mL water) was added to the aqueous solution. The solution was stirred for 1 h at room temperature. The aqueous solution was concentrated to 100 mL by evaporation. The aqueous solution was removed by decantation. The liquid product was dissolved in acetone and dried with MgSO₄, filtrated and concentrated by evaporation. Yield: 2.7 g (98 %). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.41 (t, J = 7.4 Hz, 6H), 3.38 (t, J = 2.4 Hz, 1H), 3.40–3.57 (m, 20H), 3.68 (m, 1H), 3.77 (t, J = 4.8 Hz, 4H), 4.16–4.24 (overlapping, 6H), 4.33 (t, J = 4.8 Hz, 4H), 7.73 (t, J = 1.6 Hz, 2H), 7.78 (t, J = 1.6 Hz, 2H), 9.11 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 15.1, 44.2, 48.8, 56.6, 68.1, 69.5, 69.6, 70.1, 70.3, 76.1, 76.7, 80.7, 119.5 (q, J = 320.4 Hz), 121.9, 122.8, 136.0.

1.2. ¹H and ¹³C NMR spectra of di-branched derivatives

Figure S1¹H and ¹³C NMR spectra of OH-dEG3-THP (CDCl₃)

Figure S2 ¹H and ¹³C NMR spectra of Alkyne-dEG3-THP (CDCl₃)

Figure S3 ¹H and ¹³C NMR spectra of Alkyne-dEG3-OH (CDCl₃)

Figure S4 ¹H and ¹³C NMR spectra of Alkyne-dEG3-Ts (CDCl₃)

Figure S5 ¹H and ¹³C NMR spectra of Alkyne-dEG3-I (CDCl₃)

Figure S6 ¹H and ¹³C NMR spectra of dEG3-EtIm·NTf₂ (DMSO-*d*₆)

2.1. Synthesis of tri-branched cationic alkyne derivative

Scheme S2. Synthesis of tri-branched cationic alkyne derivatives

Allyl-tEG3-THP: THP-protected triethylene glycol (6.0 g, 25.6 mmol) was dissolved in DMF (10 mL). NaH (1.2 g, 60 wt% in mineral oil) was added portionwise with stirring (*Caution: Careful for hydrogen and heat generation*). The reaction mixture was stirred at room temperature for 30 min under N₂ atmosphere. After adding Allyl-tBr^{S2} (2.0 g, 5.48 mmol), the reaction mixture was stirred at 95 °C for 24 h. After cooling to room temperature, water (100 mL) was added. The product was extracted with ether (100 mL × 2). The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, Hexane/Acetone = 3/1). Yield: 3.8 g (84 %). ¹H

NMR (400 MHz, CD₃CN): δ = 1.45–1.59 (m, 12H), 1.63–1.83 (m, 6H), 3.37 (s, 2H), 3.40 (s, 6H), 3.42–3.62 (m, 36H), 3.75–3.86 (m, 6H), 3.94 (m, 2H), 4.59 (t, J = 3.6 Hz, 3H), 5.12–5.31 (m, 2H), 5.86–5.96 (m, 1H); ¹³C NMR (100 MHz, CD₃CN): δ = 20.4, 26.3, 31.5, 46.4, 62.8, 67.5, 69.8, 70.6, 71.0, 71.2, 71.3, 72.0, 72.8, 99.8, 116.4, 136.6.

OH-tEG3-THP: **Allyl-tEG3-THP** (2.5 g, 3.0 mmol) was dissolved in DMSO (10 mL). After adding *t*BuOK (0.5 g, 4.5 mmol), the reaction mixture was stirred at 60 °C for 30 min. After adding CH₂Cl₂ (100 mL), the solution was washed with 0.1 N HCl aqueous solution (100 mL). The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The recovered residue was dissolved in acetone (25 mL). The solution was cooled to -5 °C with an ice bath under N₂ atmosphere. After adding acetone (25 mL) containing 0.50 mL conc. HCl aq., the reaction mixture was stirred at -5 °C for 1 min. The reaction was quenched with triethylamine (0.80 mL). After adding CH₂Cl₂ (100 mL), the solution was washed with 0.1 N NaHCO₃ aqueous solution (100 mL). The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, Hexane/Acetone = 2/3). Yield: 2.0 g (84 %). ¹H NMR (400 MHz, CD₃CN): δ = 1.45–1.59 (m, 12H), 1.63–1.83 (m, 6H), 2.98 (t, *J* = 6.2 Hz, 1H), 3.42 (s, 6H), 3.43–3.63 (m, 38H), 3.75–3.87 (m, 6H), 4.59 (t, *J* = 3.4 Hz, 3H); ¹³C NMR (100 MHz, CD₃CN): δ = 20.4, 26.2, 31.5, 46.2, 62.8, 64.2, 67.5, 70.9, 71.2, 71.2, 71.4, 71.8, 99.8.

Alkyne-tEG3-THP: OH-tEG3-THP (2.0 g, 2.5 mmol) was dissolved in dry THF (20 mL). The solution was cooled to -5 °C with an ice bath under N₂ atmosphere. After adding propargyl bromide (9.2 M in toluene, 0.32 mL) to the solution, NaH (0.15 g, 60 wt% in mineral oil) was added portionwise with stirring (*Caution: Careful for hydrogen and heat generation*). The reaction mixture was stirred for 3 h under N₂ atmosphere. During the reaction, the temperature gradually warmed up to room temperature. After adding water (100 mL), the product was extracted with ether (100 mL × 2). The organic layer was collected and dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, SNAP50; Hexane/DCM = 7/3). Yield: 1.9 g (92%). ¹H NMR (400 MHz,

CD₃CN): δ = 1.45–1.59 (m, 12H), 1.63–1.83 (m, 6H), 2.73 (t, J = 2.2 Hz, 1H), 3.38 (s, 6H), 3.44 (s, 2H), 3.45–3.62 (m, 36H), 3.75–3.86 (m, 6H), 4.11 (d, J = 2.4 Hz, 2H), 4.59 (t, J = 3.4 Hz, 3H); ¹³C NMR (100 MHz, CD₃CN): δ = 21.4, 27.2, 32.4, 47.1, 60.2, 63.7, 68.4, 70.8, 71.4, 71.9, 72.1, 72.2, 72.9, 76.5, 82.1, 100.7.

Alkyne-tEG3-OH: Alkyne-tEG3-THP (1.8 g, 2.2 mmol) and PPTS (0.30 g, 1.2 mmol) were dissolved in MeOH (180 mL). The reaction mixture was stirred at 80 °C for 16 h under N₂ atmosphere. After removing the solvent by evaporation, the residue was directly subjected to column chromatography (SiO₂, SNAP50; DCM/MeOH = 9/1). Yield: 1.1 g (89%). ¹H NMR (400 MHz, CD₃CN): δ = 2.72 (t, J = 2.4 Hz, 1H), 2.90 (br, 3H), 3.40 (s, 6H), 3.45 (s, 2H), 3.49–3.64 (m, 36H), 4.11 (d, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃CN): δ = 46.1, 59.3, 62.0, 69.9, 70.5, 71.0, 71.1, 71.3, 71.9, 73.3, 75.6, 81.2.

Alkyne-tEG3-Ts: Alkyne-tEG3-OH (1.0 g, 1.8 mmol), TEA (1.0 mL, 7.2 mmol) and DMAP (50 mg, 0.41 mmol) were dissolved in dry CH₂Cl₂ (10 mL). After adding TsCl (1.3 g, 6.8 mmol), the reaction mixture was stirred at room temperature for 16 h under N₂ atmosphere. After diluting the reaction mixture with CH₂Cl₂ (100 mL), the solution was washed with 0.1 N HCl aqueous solution (100 mL) and 0.1 N NaHCO₃ aqueous solution (100 mL). The organic layer was dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, DCM/Acetone = 4/1). Yield: 1.7 g (94%). ¹H NMR (400 MHz, CD₃CN): δ = 2.45 (s, 9H), 2.70 (t, J = 2.4 Hz, 1H), 3.36 (s, 6H), 3.42 (s, 2H), 3.45–3.55 (m, 24H), 3.62 (t, J = 4.6 Hz, 6H), 4.09 (d, J = 2.4 Hz, 2H), 4.12 (t, J = 4.6 Hz, 6H), 7.45 (d, J = 8.0 Hz, 6H), 7.80 (d, J = 8.0 Hz, 6H); ¹³C NMR (100 MHz, CD₃CN): δ = 21.7, 30.9, 46.1, 59.3, 69.2, 69.8, 70.5, 71.0, 71.1, 71.2, 71.9, 75.6, 81.2, 128.8, 131.0, 133.8, 146.4.

Alkyne-tEG3-I: Alkyne-tEG3-Ts (1.6 g, 1.5 mmol) and NaI (3.5 g, 23 mmol) were dissolved in dry acetone (35 mL). The reaction mixture was stirred at 60 °C for 60 h under N₂ atmosphere. After removing the solvent by evaporation, the residue was dissolved in CH_2Cl_2 (100 mL), and washed with water (100 mL). The organic layer was dried with MgSO₄, filtered and concentrated by evaporation. The crude product was purified by column chromatography (SiO₂, DCM/Acetone = 4/1). Yield: 1.3 g (93%). ¹H NMR (400 MHz, CD₃CN): δ = 2.72 (t, J = 2.4 Hz, 1H), 3.32 (t, J = 6.8 Hz, 6H), 3.39 (s, 6H), 3.45 (s, 2H), 3.51–3.64 (m, 24H), 3.73 (t, J = 6.8 Hz, 6H), 4.12 (d, J = 2.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃CN): δ = 5.0, 46.2, 59.3, 69.9, 70.5, 70.8, 71.0, 71.2, 71.9, 72.4, 75.6, 81.2.

tEG3-EtIm·NTf₂: **Alkyne-tEG3-I** (0.90 g, 1.0 mmol) and 1-ethyl-imidazole (1.5 mL, 15.6 mmol) were stirred at 100 °C for 72 h under N₂ atmosphere. The reaction mixture was diluted by distilled water (150 mL). The aqueous solution was washed with CH₂Cl₂ (100 mL × 4) and diethyl ether (100 mL × 2). Li·NTf₂ aqueous solution (5.0 g/10 mL water) was added to the aqueous solution. The solution was stirred for 1 h at room temperature. The aqueous solution was concentrated to 100 mL by evaporation. The aqueous solution was removed by decantation. The liquid product was dissolved in acetone and dried with MgSO₄, filtrated and concentrated by evaporation. Yield: 1.3 g (79 %). ¹H NMR (400 MHz, CD₃CN): δ = 1.49 (t, J = 7.4 Hz, 9H), 2.71 (t, J = 2.2 Hz, 1H), 3.37 (s, 6H), 3.42 (s, 2H), 3.49–3.63 (m, 24H), 3.80 (t, J = 4.8 Hz, 6H), 4.09 (d, J = 2.2 Hz, 2H), 4.20 (q, J = 7.4 Hz, 6H), 4.29 (t, J = 4.8 Hz, 6H), 7.42 (t, J = 1.6 Hz, 3H), 8.55 (s, 3H); 15.5, 45.9, 46.2, 50.5, 59.3, 69.2, 69.9, 70.6, 70.9, 71.0, 71.1, 71.9, 75.6, 81.2, 120.9 (q, J = 319 Hz), 122.7, 124.1, 136.5.

2.2. ¹H and ¹³C NMR spectra of tri-branched derivatives

Figure S7 ¹H and ¹³C NMR spectra of Allyl-tEG3-THP (CD₃CN)

Figure S8 ¹H and ¹³C NMR spectra of OH-tEG3-THP (CD₃CN)

Figure S9 ¹H and ¹³C NMR spectra of Alkyne-tEG3-THP (CD₃CN)

Figure S10 ¹H and ¹³C NMR spectra of Alkyne-tEG3-OH (CD₃CN)

Figure S11 1 H and 13 C NMR spectra of Alkyne-tEG3-Ts (CD₃CN)

Figure S12 1 H and 13 C NMR spectra of Alkyne-tEG3-I (CD₃CN)

Figure S13 ¹H and ¹³C NMR spectra of tEG3-EtIm·NTf₂ (CD₃CN)

3. IR spectra of GAP and cationic GTPs

Figure S14 FT-IR spectra of GAP and cationic GTPs. (a) GAP, (b) GTP-mEG4-EtIm·NTf₂, (c) GTP-dEG3-EtIm· NTf₂, and (d) GTP-tEG3-EtIm·NTf₂ (KBr pellet)

4. ¹H NMR spetra of cationic GTPs

Figure S15 ¹H NMR spectra of cationic GTPs (a) GTP-mEG4-EtIm·NTf₂, (b) GTP-dEG3-EtIm·NTf₂, and (c) GTP-tEG3-EtIm·NTf₂ (DMSO-*d*₆)

5. SEC data

Figure S16. (a) SEC trace of GTP-Bz (50 °C, 0.01 M Li·NTf₂ in DMF). Chemical structure of GTP-Bz is depicted. (b) Molecular weight distribution curve of GTP-Bz.

6. DSC data

Figure S17. DSC traces of cationic alkynes and GTPs. Heating rate 10 °C min⁻¹.

7. TGA data

Figure S18. TGA traces of cationic GTPs. N_2 atmosphere. Heating rate 10 °C min⁻¹.

Figure S19. TGA traces of cationic GTPs at 120° C. N₂ atmosphere.

8. Impedance data

Figure S20. Conductivity change under 120 °C for 24h. Values in parenthesis are conductivity at 25 °C after dry process under 120 °C for 24h.

Figure S21. Conductivity vs frequency plot at temperatures range from 90 to 10 °C for GTP-dEG3-EtIm·NTf₂. Anhydrous condition.

Figure S22. The plot of tan d vs angular frequency at 25 °C under dry condition. The dot curves were obtained from fitting by equation (3).

Figure S23. Dielectric constant vs frequency plot at 25°C. Arrows indicate calculated static dielectric constant by equation (6).

T °C	GTP-mEG4-EtIm·NTf ₂ S cm ⁻¹	GTP-dEG3-EtIm·NTf ₂ S cm ⁻¹	GTP-tEG3-EtIm·NTf ₂ S cm ⁻¹
90	$7.39 \pm 0.31 \times 10^{-4}$	$1.12 \pm 0.04 \times 10^{-3}$	$1.13 \pm 0.01 \times 10^{-3}$
80	$5.02 \pm 0.22 \times 10^{-4}$	$7.81 \pm 0.24 \times 10^{-4}$	$8.09 \pm 0.06 \times 10^{-4}$
70	$3.09 \pm 0.12 \times 10^{-4}$	$5.19 \pm 0.15 \times 10^{-4}$	$5.53 \pm 0.04 \times 10^{-4}$
60	$1.86 \pm 0.08 \times 10^{-4}$	$3.20 \pm 0.07 \times 10^{-4}$	$3.55\pm 0.06\times 10^{-4}$
50	$1.01 \pm 0.05 \times 10^{-4}$	$1.85 \pm 0.04 \times 10^{-4}$	$2.12 \pm 0.03 \times 10^{-4}$
40	$4.77 \pm 0.23 \times 10^{-5}$	$9.64 \pm 0.23 \times 10^{-5}$	$1.15\pm 0.02\times 10^{-4}$
30	$1.93 \pm 0.09 \times 10^{-5}$	$4.34 \pm 0.08 \times 10^{-5}$	$5.53 \pm 0.11 \times 10^{-5}$
20	$6.34 \pm 0.31 \times 10^{-6}$	$1.64 \pm 0.03 \times 10^{-5}$	$2.25 \pm 0.05 \times 10^{-5}$
10	$1.68 \pm 0.06 \times 10^{-6}$	$5.39 \pm 0.11 \times 10^{-6}$	$8.16 \pm 0.35 \times 10^{-6}$

Table S1. Ionic conductivity of GTP derivatives (Average \pm standard error, n = 4)

Table S2. Conducting ion concentration of GTP derivatives (Average \pm standard error, n = 4)

T °C	$GTP-mEG4-EtIm \cdot NTf_2$ cm^{-3}	GTP - $dEG3$ - $EtIm$ · NTf_2 cm^{-3}	GTP-tEG3-EtIm·NTf ₂ cm ⁻³
30	$1.12\pm 0.07\times 10^{18}$	$1.21 \pm 0.05 \times 10^{18}$	$1.32\pm 0.08\times 10^{18}$
20	$9.30 \pm 0.61 \times 10^{17}$	$9.82 \pm 0.25 \times 10^{17}$	$1.04\pm 0.06\times 10^{18}$
10	$7.55 \pm 0.57 \times 10^{17}$	$8.05 \pm 0.30 \times 10^{17}$	$8.99 \pm 0.65 \times 10^{17}$

Table S3. Conducting ion mobility of GTP derivatives (Average \pm standard error, n = 4)

T °C	$\begin{array}{c} \text{GTP-mEG4-EtIm} \cdot \text{NTf}_2 \\ \text{cm}^2 \ \text{V}^{-1} \ \text{s}^{-1} \end{array}$	$\begin{array}{c} \text{GTP-dEG3-EtIm}\cdot\text{NTf}_2\\ \text{cm}^2 \ \text{V}^{-1} \ \text{s}^{-1} \end{array}$	$\begin{array}{c} \text{GTP-tEG3-EtIm}\cdot\text{NTf}_2\\ \text{cm}^2 \ \text{V}^{-1} \ \text{s}^{-1} \end{array}$
30	$1.09 \pm 0.11 \times 10^{-4}$	$2.22 \pm 0.05 \times 10^{-4}$	$2.68 \pm 0.10 \times 10^{-4}$
20	$4.32 \pm 0.41 \times 10^{-5}$	$1.04\pm 0.01\times 10^{-4}$	$1.39 \pm 0.05 \times 10^{-4}$
10	$1.42 \pm 0.14 \times 10^{-5}$	$4.14 \pm 0.13 \times 10^{-5}$	$5.87 \pm 0.12 \times 10^{-5}$

T °C	GTP-mEG4-EtIm·NTf ₂	GTP-dEG3-EtIm·NTf ₂	GTP-tEG3-EtIm·NTf ₂
30	129 ± 5	87.0 ± 1.6	62.8 ± 1.5
20	138 ± 5	98.1 ± 2.4	77.9 ± 2.4
10	148 ± 8	108 ± 2	86.2 ± 3.8

Table S4. Static dielectric constant of GTP derivatives (Average \pm standard error, n = 4)

9. References

- S1. F. A. Loiseau, K. K. Hii and A. M. Hill, J. Org. Chem., 2004, 69, 639.
- S2. D. Lee, H. Y. Jung and M. J. Park, ACS Macro Lett., 2018, 7, 1046.