Supporting Information

A COMPARISON OF THE SOLUTION RADICAL PROPAGATION KINETICS OF PARTIALLY WATER-MISCIBLE NON-FUNCTIONAL ACRYLATES TO ACRYLIC ACID

Maryam Agboluaje, Ibrahim Refai, Henry Manston, Robin A. Hutchinson*¹ Eva Dušička, Anna Urbanová, Igor Lacík*^{2,3}

¹Department of Chemical Engineering, Dupuis Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada; <u>robin.hutchinson@queensu.ca</u>

²Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; igor.lacik@savba.sk

³Centre for Advanced Materials Application of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11, Bratislava, Slovakia

Curve smoothing was performed on the 1st derivative $\left(\frac{dw(\log M)}{d\log M}\right)$ plots calculated from the RI and LS molar mass distributions collected at Queen's University using finite differences (equation S1) to reduce the noise and unambiguously identify the location of the maxima, as shown in **Figure S1**.

$$\frac{\mathrm{d}w(\mathrm{log}M)_k}{\mathrm{d}\mathrm{log}M_k} = \frac{w(\mathrm{log}M)_k - w(\mathrm{log}M)_{k+j}}{\mathrm{log}M_k - \mathrm{log}M_{k+j}} \tag{S1}$$

Index k represents the data slice and $\log M_k$ and $w(\log M)_k$ are the corresponding $\log M$ and $w(\log M)$ values. The value of the step size j is selected to significantly reduce the noise without losing the features of the distribution. Typically, $j \approx 7-10$ was chosen for the distributions collected from the Waters RI detector, which provided 300-600 slices of data. The Wyatt Instruments LS detector provided ~600 slices of data and a typical value chosen for $j \approx 30-40$.

Figure S1. First derivative plots calculated using the MMD bulk MEA at 380 Hz (a) before and (b) after curve smoothing procedure using data from the RI detector and (c) before and (d) after curve smoothing procedure using data from the LS detector.

Solvents/Monomer	$ ho (\text{g} \cdot \text{cm}^{-3})$	References
MA	0.9774·exp(-0.001260 <i>T</i>)	1
MEA	$1.0247 - 0.000835T^{a}$	2
AA	$1.0731 - 1.0826 \cdot 10^{-3}T - 7.2379 \cdot 10^{-7}T^2$	3
MeOH	$0.8110 - 0.0010007^{b}$	4
BuOH	0.8398 - 0.001190T	5
EtOH	$0.8070 - 0.000877T^{\circ}$	6
H ₂ O	$1.0087 - 0.000400T^{d}$	7
DMF	1.235026 - 0.000972T	5

Table S1. Density correlations for monomers and solvents, with T in °C. Ideal mixing of monomer and solvents was assumed for the calculation of the overall density of the solution.

^aMEA density correlation assumes the temperature dependence is identical to butyl acrylate with the y-intercept selected such that ρ_{MEA} =1.008 g/cm³ (Sigma-Aldrich) at 20 °C. ^bMeOH density correlation obtained from linear regression of ρ_{MeOH} data between 25-50 °C. ^cEtOH density correlation obtained from linear regression of $\rho_{H_{2}O}$ data between 15-55 °C. ^dH₂O density correlation obtained from linear regression based of $\rho_{H_{2}O}$ data between 17-82 °C.

Table S2. A comparison of MEA k_p values calculated from SEC analysis of PLP-generated polymer MMDs using refractive index (RI) and multiangle light scattering (LS) detectors. Δ is the percent difference between values estimates from RI and LS detection according to $(k_{p1} \text{ RI}-k_{p1} \text{ LS})/(k_{p1} \text{ RI})$. All samples generated at 30 °C using 5 mmol·L⁻¹ DMPA initiator, with w_{MEA} the weight fraction of MEA in solution and α_{MeOH} the weight fraction of MeOH (balance H₂O) in the solvent.

	f	$\log M_1$	M_1/M_2	$k_{p1} \cdot 10^{-3}$ RI	$\log M_1$	M_1/M_2	$k_{p1} \cdot 10^{-3}$ LS	Δ (%)
W _{MEA}	(Hz)	RI	RI	$(L \cdot mol^{-1} \cdot s^{-1})$	ĹS	LS	$(L \cdot mol^{-1} \cdot s^{-1})$	
				Bulk				
1.00	380	4.847	0.486	26.7	4.812	0.452	24.7	7.74
				<i>а_{МеОН}=</i> ().70			
0.83	300	4.879	0.538	28.4	4.886	0.546	28.9	-1.62
0.83	400	4.776	0.513	29.9	4.799	0.470	31.5	-5.44
				а _{МеОН} =().44			
0.82	400	4.816	0.509	32.7	4.821	0.513	33.1	-1.16
0.14	300	4.529	0.558	81.2	4.528	0.561	81.0	0.23
0.14	350	4.463	0.535	81.3	4.457	0.528	80.2	1.37

Figure S2. Droplets observed in 26 wt% MEA at $\alpha_{MeOH} = 0.20$ with 6 mmol·L⁻¹ DMPA. The MEA system became immiscible when DMPA was added to reaction mixtures with a high water content (e.g., 5 wt% MEA in water, 13 and 26 wt% MEA at $\alpha_{MeOH} = 0.20$).

	f	$\log M_1$	M_1/M_2	RI $k_{p1} \cdot 10^{-3}$	Notes
$(\text{mmol}\cdot L^{-1})$	(Hz)	RI	101 [71012	$(L \cdot mol^{-1} \cdot s^{-1})$	110105
5.0	380	4.799	0.570	23.9	
5.0	480	4.670	0.494	22.5	
5.0	380	4.792	0.505	23.5	
5.0	480	4.680	0.469	23.0	
5.0	380	4.847	0.486	26.7	
5.0	480	4.755	0.442	27.3	
5.0	380	4.827	0.541	25.3	
5.0	380	4.813	0.558	24.5	
5.0	480	4.747	0.518	26.6	
5.0	480	4.754	0.540	27.0	
5.0	380	-	0.563	22.8	8
5.0	480	-	0.516	24.5	8
7.0	380	-	0.502	23.5	8
7.0	480	-	0.570	24.5	8

Table S3. k_p values for bulk MEA at 30 °C using DMPA as initiator.

Table S4. k_p values for MEA at 30 °C determined from PLP experiments conducted in MeOH and MeOH/H₂O mixtures. Experiments used DMPA as initiator unless otherwise indicated (^aD1173 initiator). w_{MEA} and v_{MEA} are weight and volume fraction of monomer in solution, respectively, and α_{MeOH} is the weight fraction of MeOH (balance H₂O) in the solvent. Some MMDs were transformed with the parameter γ in order to reveal PLP structure according to a technique described in another work.⁹ ^bPolymer precipitated out of PLP solution after pulsing.

W _{MEA}	<i>v_{MEA}</i>	CInitiator	α_{MeOH}	f	$\log M_1$	M_1/M_2	RI $k_{p1} \cdot 10^{-3}$	Notes
		$(\text{mmol}\cdot L^{-1})$		(Hz)	RI	111/11/2	$(L \cdot mol^{-1} \cdot s^{-1})$	110000
0.84	0.80	5.0	1.00	250	4.897	0.556	24.7	
0.84	0.80	5.0	1.00	300	4.827	0.522	25.2	
0.84	0.80	5.0	1.00	350	4.776	0.526	26.2	
0.84	0.80	5.0	1.00	250	4.870	0.570	23.2	
0.84	0.80	5.0	1.00	300	4.820	0.540	24.8	
0.84	0.80	5.0	1.00	350	4.765	0.545	25.5	
0.56	0.50	5.0	1.00	250	4.680	0.541	24.0	
0.56	0.50	5.0	1.00	300	4.603	0.547	24.1	
0.56	0.50	5.0	1.00	250	4.733	0.561	27.1	
0.56	0.50	5.0	1.00	300	4.664	0.540	27.8	
0.30	0.25	5.0	1.00	250	4.469	0.558	29.6	
0.30	0.25	5.0	1.00	300	4.405	0.564	30.6	
0.30	0.25	5.0	1.00	250	4.506	0.539	32.2	
0.30	0.25	5.0	1.00	300	4.437	0.560	33.0	
0.15	0.13	5.0	1.00	150	4.353	0.535	27.2	
0.15	0.13	5.0	1.00	150	4.428	0.485	32.3	
0.15	0.13	5.0	1.00	200	4.289	0.540	31.3	
0.15	0.13	5.0	1.00	250	4.200	0.546	31.8	
0.15	0.13	5.0	1.00	300	4.030	0.472	25.8	
0.15	0.13	5.0	1.00	350	4.009	0.504	28.7	
0.15	0.13	5.0	1.00	150	4.400	0.497	30.3	
0.15	0.13	5.0	1.00	200	4.301	0.530	32.1	
0.15	0.13	5.0	1.00	250	4.225	0.546	33.7	
0.15	0.13	5.0	1.00	300	4.137	0.528	33.0	
0.15	0.13	5.0	1.00	350	4.067	0.507	32.8	
0.15	0.13	5.0	1.00	150	4.443	0.494	33.4	
0.15	0.13	5.0	1.00	200	4.331	0.533	34.4	
0.15	0.13	5.0	1.00	250	4.245	0.545	35.4	
0.15	0.13	5.0	1.00	300	4.161	0.523	35.0	
0.15	0.13	5.0	1.00	350	4.094	0.503	34.9	
0.83	0.80	5.0	0.70	300	4.879	0.538	28.4	
0.83	0.80	5.0	0.70	350	4.830	0.513	29.6	
0.83	0.80	5.0	0.70	400	4.776	0.513	29.9	
0.54	0.50	5.0	0.70	250	4.786	0.558	30.6	
0.54	0.50	5.0	0.70	300	4.664	0.500	27.7	

0.29	0.25	5.0	0.70	250	4.569	0.548	37.1	
0.29	0.25	5.0	0.70	300	4.535	0.597	41.2	
0.29	0.25	5.0	0.70	200	4.603	0.434	32.1	а
0.29	0.25	5.0	0.70	250	4.553	0.498	35.8	а
0.29	0.25	5.0	0.70	300	4.507	0.541	38.6	а
0.15	0.13	5.0	0.70	250	4.407	0.538	51.2	
0.15	0.13	5.0	0.70	300	4.330	0.548	51.4	
0.15	0.13	5.0	0.70	350	4.277	0.545	53.1	
0.15	0.13	5.0	0.70	200	4.444	0.540	44.6	а
0.15	0.13	5.0	0.70	250	4.369	0.553	46.9	а
0.15	0.13	5.0	0.70	300	4.304	0.564	48.4	а
0.82	0.80	5.0	0.44	300	4.936	0.550	32.4	
0.82	0.80	5.0	0.44	400	4.816	0.509	32.7	
0.53	0.50	5.0	0.44	250	4.868	0.590	36.9	
0.53	0.50	5.0	0.44	300	4.803	0.556	38.1	
0.53	0.50	5.0	0.44	350	4.762	0.509	40.5	
0.27	0.25	5.0	0.44	250	4.823	0.527	66.6	
0.27	0.25	5.0	0.44	300	4.762	0.492	69.4	
0.27	0.25	5.0	0.44	350	4.722	0.552	73.8	
0.27	0.25	5.0	0.44	250	4.825	0.531	66.9	а
0.27	0.25	5.0	0.44	300	4.759	0.541	68.9	а
0.27	0.25	5.0	0.44	350	4.687	0.536	68.1	а
0.22	0.20	5.0	0.44	300	4.709	0.508	76.1	
0.22	0.20	5.0	0.44	300	4.706	0.526	75.6	
0.22	0.20	5.0	0.44	250	4.777	0.495	74.2	
0.22	0.20	5.0	0.44	250	4.770	0.488	73.1	
0.14	0.13	5.0	0.44	250	4.590	0.562	77.8	
0.14	0.13	5.0	0.44	300	4.529	0.558	81.2	
0.14	0.13	5.0	0.44	350	4.463	0.535	81.3	
0.14	0.13	5.0	0.44	200	4.636	0.535	69.2	а
0.14	0.13	5.0	0.44	250	4.553	0.546	71.5	а
0.14	0.13	5.0	0.44	300	4.492	0.545	74.5	а
0.52	0.50	0.0	0.20	imm	iscible at	room tem	perature (RT)	
0.26	0.25	5.0	0.20	imm	iscible w	hen DMPA	A added at RT	
0.26	0.25	6.5	0.20	250	4.947	0.532	88.4	^{a,b} , $\gamma = -1$
0.26	0.25	6.5	0.20	300	4.865	0.498	87.8	^{a,b} , $\gamma = -0.5$
0.26	0.25	6.5	0.20	350	4.782	0.476	84.6	a,b
0.26	0.25	6.5	0.20	400	4.759	0.493	91.7	^{a,b} , $\gamma = -0.5$
0.26	0.25	5.0	0.20	325	4.753	0.450	73.5	a,b
0.26	0.25	5.0	0.20	375	4.668	0.447	69.8	a,b
0.26	0.25	6.5	0.20	250	4.901	0.524	79.5	a,b
0.26	0.25	6.5	0.20	300	4.813	0.497	77.9	a,b
0.26	0.25	6.5	0.20	350	4.749	0.485	78.4	a,b
0.26	0.25	5.0	0.20	250	4.901	0.535	79.5	a,b

0.26	0.25	5.0	0.20	300	4.813	0.508	77.9	a,b
0.26	0.25	5.0	0.20	350	4.767	0.497	81.8	a,b
0.13	0.13	4.0	0.20	Imm	iscible w	hen DMPA	A added at RT	
0.13	0.13	5.0	0.20	150	4.912	0.455	97.8	^{a,b} , $\gamma = -1.3$
0.13	0.13	5.0	0.20	200	4.788	0.438	98.1	^{a,b} , $\gamma = -0.9$
0.13	0.13	6.5	0.20	250	4.786	0.480	122.0	^{a,b} , $\gamma = -1.1$
0.13	0.13	5.0	0.20	250	4.788	0.465	122.6	^{a,b} , $\gamma = -1.9$
0.13	0.13	5.0	0.20	225	4.845	0.480	125.8	^{a,b} , $\gamma = -1.6$
0.13	0.13	5.0	0.20	275	4.774	0.491	130.5	^{a,b} , $\gamma = -1.8$

Table S5. k_p values for MEA at 30 °C determined from individual PLP experiments conducted in EtOH and EtOH/H₂O mixtures. Experiments used DMPA as initiator unless otherwise indicated (aD1173 initiator). w_{MEA} and v_{MEA} are weight and volume fraction of monomer in solution, respectively, and α_{EtOH} is the weight fraction of EtOH (balance H₂O) in the solvent.

W _{MEA}	V _{MEA}	$C_{Initiator}$ (mmol·L ⁻¹)	α_{EtOH}	f (Hz)	$\log M_1$ RI	M_{1}/M_{2}	RI $k_{p1} \cdot 10^{-3}$ (L·mol ⁻¹ ·s ⁻¹)	Notes
0.84	0.80	5.0	1.00	300	4.780	0.531	22.6	
0.84	0.80	5.0	1.00	400	4.688	0.518	24.4	
0.56	0.50	5.0	1.00	300	4.635	0.561	25.9	
0.56	0.50	5.0	1.00	400	4.534	0.553	27.4	
0.30	0.25	5.0	1.00	300	4.426	0.552	32.1	
0.30	0.25	5.0	1.00	400	4.320	0.550	33.5	
0.15	0.13	5.0	1.00	300	4.206	0.564	38.7	
0.15	0.13	5.0	1.00	400	4.067	0.516	37.4	
0.83	0.80	5.0	0.70	300	4.834	0.596	25.6	
0.83	0.80	5.0	0.70	400	4.735	0.556	27.2	
0.55	0.50	5.0	0.70	300	4.725	0.519	31.9	
0.55	0.50	5.0	0.70	400	4.625	0.578	33.8	
0.29	0.25	5.0	0.70	300	4.509	0.566	38.8	
0.29	0.25	5.0	0.70	400	4.400	0.565	40.2	
0.29	0.25	5.0	0.70	250	4.522	0.499	33.3	а
0.29	0.25	5.0	0.70	300	4.474	0.509	35.8	а
0.15	0.13	5.0	0.70	300	4.265	0.570	44.2	
0.15	0.13	5.0	0.70	250	4.344	0.571	44.2	а
0.15	0.13	5.0	0.70	300	4.280	0.577	45.8	а
0.15	0.13	5.0	0.70	400	4.149	0.546	45.2	а

W _{MEA}	V _{MEA}	$C_{Initiator}$ (mmol·L ⁻¹)	f (Hz)	$\log M_1$ RI	M_1/M_2	$\frac{\text{RI } k_{p1} \cdot 10^{-3}}{(\text{L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1})}$	Notes
0.55	0.50	5.0	300	4.632	0.553	25.8	
0.55	0.50	5.0	400	4.523	0.560	26.8	
0.55	0.50	5.0	300	4.731	0.530	32.1	
0.55	0.50	5.0	400	4.631	0.561	33.9	
0.55	0.50	5.0	380	-	0.573	31.9	Taken from ref ⁸
0.55	0.50	5.0	480	-	0.557	33.3	Taken from ref ⁸
0.55	0.50	5.0	300	4.708	0.551	30.6	
0.55	0.50	5.0	400	4.607	0.567	32.3	
0.55	0.50	5.0	380	4.616	0.556	31.4	
0.55	0.50	5.0	480	4.535	0.560	32.9	
0.29	0.25	5.0	300	4.457	0.560	34.5	
0.29	0.25	5.0	400	4.330	0.556	34.4	
0.29	0.25	5.0	300	4.486	0.558	36.7	
0.29	0.25	5.0	400	4.398	0.557	39.9	
0.15	0.13	5.0	400	4.115	0.489	41.9	b
0.15	0.13	5.0	450	4.108	0.507	46.4	b
0.15	0.13	5.0	500	4.078	0.505	48.2	b
0.15	0.13	5.0	400	4.134	0.528	43.5	b
0.15	0.13	5.0	450	4.105	0.506	45.8	b
0.15	0.13	5.0	500	4.054	0.483	45.2	b
0.15	0.13	5.0	400	4.127	0.538	43.1	b
0.15	0.13	5.0	450	4.072	0.509	42.7	b
0.15	0.13	5.0	500	4.060	0.528	46.2	b

Table S6. k_p values for MEA at 30 °C determined from individual PLP experiments conducted in BuOH with DMPA initiator. w_{MEA} and v_{MEA} are weight and volume fraction of monomer in solution, respectively. ^bPolymer precipitated out of PLP solution after pulsing.

Table S7. k_p values for MEA at 30 °C determined from individual PLP experiments conducted in H₂O (^aD1173 initiator was used). w_{MEA} and v_{MEA} are weight and volume fraction of monomer in solution. ^bPolymer precipitated out of PLP solution after pulsing. Some MMDs were transformed with the parameter γ in order to reveal PLP structure according to a technique described in another work.⁹

W _{MEA}	V _{MEA}	$C_{Initiator}$ (mmol·L ⁻¹)	$f(\mathrm{Hz})$	$\log M_1$ RI	M_{1}/M_{2}	RI $k_{p1} \cdot 10^{-3}$ (L·mol ⁻¹ ·s ⁻¹)	Notes
0.05	0.05	5.0	Immisci	ble with DM	IPA at roo	m temperature	
0.05	0.05	5.0	300	4.507	0.455	192.1	^{a,b} , $\gamma = -1.0$
0.05	0.05	5.0	350	4.477	0.538	209.2	^{a,b} , $\gamma = -1.4$
0.05	0.05	5.0	250	4.547	0.474	175.5	^{a,b} , $\gamma = -1.3$
0.05	0.05	5.0	250	4.607	0.500	201.5	^{a,b} , $\gamma = -1.3$

Figure S3. (a) $w(\log M)$ molar mass distribution and (b) differential $w(\log M)$ distribution for bulk MEA at 30 °C at 380 Hz and 480 Hz with 5 mmol·L⁻¹ DMPA.

Figure S4. (a) *w*(log*M*) molar mass distribution and (b) differential *w*(log*M*) distribution for 50 v% MEA in BuOH at 30 °C at 300 Hz and 400 Hz with 5 mmol·L⁻¹ DMPA.

Figure S5. (a) *w*(log*M*) molar mass distribution and (b) differential *w*(log*M*) distribution for 25 v% MEA in MeOH at 30 °C at 300 Hz and 400 Hz with 5 mmol·L⁻¹ DMPA.

Figure S6. (a) *w*(log*M*) molar mass distribution and (b) differential *w*(log*M*) distribution for 25 v% MEA in 75v:25v MeOH:H₂O at 30 °C at 250 Hz and 300 Hz 5 mmol·L⁻¹ DMPA.

Table S8. A comparison of mean k_p values (k_p^{mean}) of MEA from PLP experiments at 30 °C using two different photoinitiators, DMPA and D1173, at identical conditions (see Table S4 and Table S5 for details). The absolute difference $|\Delta|$ (%) is calculated as $100 \cdot (k_{p, \text{DMPA}}^{mean} - k_{p, \text{D1173}}^{mean})/k_{p, \text{DMPA}}^{mean}$. w_{MEA} and v_{MEA} are weight and volume fraction of monomer in solution, respectively, and α_x is the weight fraction of alcohol x (balance H₂O) in the solvent.

W _{MEA}	v_{MEA}	Solvent	α_x	$k_{p, \text{ DMPA}}^{mean} \cdot 10^{-3}$	$k_{p, D1173}^{mean} \cdot 10^{-3}$	Δ (%)
				$(L \cdot mol^{-1} \cdot s^{-1})$	$(L \cdot mol^{-1} \cdot s^{-1})$	
0.29	0.25	MeOH/H ₂ O	0.70	39.2	35.5	9.3
0.15	0.13	MeOH/H ₂ O	0.70	51.9	46.6	10.2
0.27	0.25	MeOH/H ₂ O	0.44	69.9	68.0	2.8
0.14	0.13	MeOH/H ₂ O	0.44	80.1	71.8	10.4
0.29	0.25	EtOH/H ₂ O	0.70	39.5	34.5	12.6
0.15	0.13	EtOH/H ₂ O	0.70	44.2	45.1	1.9

Table S9. k_p values for MA determined from PLP experiments conducted in EtOH and EtOH/H₂O mixtures at 30 °C. Experiments used D1173 as initiator unless otherwise indicated (aDMPA initiator). w_{MA} and v_{MA} are weight and volume fraction of monomer in solution, respectively, and α_{EtOH} is the weight fraction of EtOH (balance H₂O) in the solvent.

W _{MA}	v_{MA}	C _{Initiator}	α_{EtOH}	f	$\log M_1$	M_{\star}/M_{\star}	RI $k_{p1} \cdot 10^{-3}$	Notes
		$(\text{mmol} \cdot L^{-1})$		(Hz)	RI	1/1/1/1/2	$(L \cdot mol^{-1} \cdot s^{-1})$	noics
0.55	0.50	5.0	1.00	200	4.620	0.471	17.7	а
0.55	0.50	5.0	1.00	300	4.470	0.515	18.8	а
0.55	0.50	5.0	1.00	300	4.480	0.504	19.2	а
0.55	0.50	5.0	1.00	400	4.359	0.513	19.4	а
0.55	0.50	5.0	1.00	400	4.369	0.538	19.9	а
0.55	0.50	5.0	1.00	500	4.285	0.536	20.5	а
0.50	0.45	5.0	1.00	300	4.565	0.468	25.7	
0.50	0.45	5.0	1.00	400	4.426	0.511	24.9	
0.50	0.45	5.0	1.00	500	4.279	0.552	22.2	
0.20	0.17	5.0	1.00	300	4.195	0.566	28.8	
0.20	0.17	5.0	1.00	400	4.067	0.578	28.6	
0.20	0.17	5.0	1.00	500	3.985	0.528	29.6	
0.10	0.08	5.0	1.00	200	4.094	0.509	30.7	
0.10	0.08	5.0	1.00	300	3.918	0.474	30.7	
0.10	0.08	5.0	1.00	400	3.819	0.500	32.6	
0.10	0.08	5.0	1.00	500	3.745	0.560	34.3	
0.50	0.47	5.0	0.75	200	4.804	0.481	28.9	
0.50	0.47	5.0	0.75	300	4.652	0.476	30.5	
0.50	0.47	5.0	0.75	400	4.539	0.514	31.4	
0.50	0.47	5.0	0.75	500	4.445	0.509	31.6	
0.20	0.18	5.0	0.75	300	4.311	0.548	36.0	
0.20	0.18	5.0	0.75	400	4.215	0.558	38.5	
0.20	0.18	5.0	0.75	500	4.13	0.566	39.6	
0.10	0.09	5.0	0.75	300	4.041	0.548	39.1	
0.10	0.09	5.0	0.75	400	3.947	0.522	42.0	
0.10	0.09	5.0	0.75	500	3.876	0.526	44.6	
0.50	0.48	5.0	0.50	300	4.684	0.441	31.8	
0.50	0.48	5.0	0.50	400	4.582	0.467	33.5	
0.50	0.48	5.0	0.50	500	4.504	0.522	35.0	
0.20	0.19	5.0	0.50	400	4.356	0.458	50.8	
0.20	0.19	5.0	0.50	500	4.285	0.543	53.9	
0.10	0.09	5.0	0.50	300	4.251	0.509	60.1	
0.10	0.09	5.0	0.50	400	4.150	0.573	63.5	
0.10	0.09	5.0	0.50	500	4.031	0.500	60.4	
0.05	0.04	5.0	0.50	400	3.909	0.525	73.2	
0.05	0.04	5.0	0.50	500	3.831	0.439	76.5	
0.10	0.10	5.0	0.25	300	4.562	0.435	115.9	
0.10	0.10	5.0	0.25	400	4.458	0.491	121.6	

0.10	0.10	5.0	0.25	500	4.362	0.472	121.9	
0.05	0.05	5.0	0.25	400	4.234	0.451	145.7	
0.05	0.05	5.0	0.25	500	4.120	0.495	140.1	

Table S10. k_p values for MA at 40-60 °C determined from PLP experiments conducted in EtOH and EtOH/H₂O mixtures using DMPA as initiator unless otherwise stated (aD1173) initiator). w_{MA} and v_{MA} are weight and volume fraction of monomer in solution, respectively, and α_{EtOH} is the weight fraction of EtOH (balance H₂O) in the solvent.

Т	W _{MA}	v_{MA}	$C_{Initiator}$	α_{EtOH}	f	$\log M_1$		RI $k_{p1} \cdot 10^{-3}$	Notes
(°C)			$(\text{mmol} \cdot L^{-1})$		(Hz)	RI	M_{1}/M_{2}	$(L \cdot mol^{-1} \cdot s^{-1})$	
40	0.55	0.50	5.0	1.00	300	4.545	0.491	22.6	
40	0.55	0.50	5.0	1.00	300	4.535	0.493	22.1	
40	0.55	0.50	5.0	1.00	400	4.440	0.520	23.7	
40	0.55	0.50	5.0	1.00	400	4.430	0.522	23.1	
40	0.55	0.50	5.0	1.00	500	4.350	0.525	24.0	
40	0.10	0.08	5.0	1.00	400	3.829	0.440	34.0	a
40	0.10	0.08	5.0	1.00	500	3.768	0.484	37.0	а
40	0.10	0.08	5.0	1.00	500	3.750	0.513	35.5	а
50	0.55	0.50	5.0	1.00	300	4.563	0.422	23.8	
50	0.55	0.50	5.0	1.00	400	4.467	0.513	25.5	
50	0.55	0.50	5.0	1.00	500	4.401	0.532	27.4	
50	0.10	0.08	5.0	1.00	400	3.888	0.463	39.4	а
50	0.10	0.08	5.0	1.00	500	3.797	0.428	40.0	a
50	0.10	0.08	5.0	1.00	500	3.786	0.428	39.0	а
60	0.55	0.50	5.0	1.00	500	4.427	0.505	29.4	
60	0.10	0.08	5.0	1.00	500	3.805	0.450	41.2	а
60	0.10	0.08	5.0	1.00	500	3.808	0.442	41.4	а
40	0.10	0.09	5.0	0.75	400	3.975	0.562	45.0	а
40	0.10	0.09	5.0	0.75	500	3.893	0.489	46.6	a
40	0.10	0.09	5.0	0.75	500	3.890	0.433	46.4	а
50	0.10	0.09	5.0	0.75	500	3.918	0.442	49.8	а
50	0.10	0.09	5.0	0.75	400	4.000	0.420	48.2	а
60	0.10	0.09	5.0	0.75	500	3.929	0.450	51.6	а
60	0.10	0.09	5.0	0.75	500	3.915	0.530	50.0	а
40	0.53	0.50	5.0	0.70	300	4.630	0.468	27.4	
40	0.53	0.50	5.0	0.70	400	4.531	0.498	29.1	
40	0.53	0.50	5.0	0.70	500	4.437	0.526	29.3	
40	0.10	0.09	5.0	0.50	400	4.172	0.494	67.5	а
40	0.10	0.09	5.0	0.50	500	4.078	0.506	67.9	а
50	0.10	0.09	5.0	0.50	400	4.222	0.526	76.4	а
50	0.10	0.09	5.0	0.50	500	4.137	0.535	78.5	а
60	0.10	0.09	5.0	0.50	400	4.246	0.443	81.4	а
60	0.10	0.09	5.0	0.50	500	4.16	0.564	83.5	а

40	0.10	0.10	5.0	0.25	400	4.461	0.478	123.1	а
40	0.10	0.10	5.0	0.25	500	4.374	0.446	126.0	а
50	0.10	0.10	5.0	0.25	500	4.504	0.540	136.8	а
50	0.10	0.10	5.0	0.25	400	4.390	0.512	131.5	а

Table S11. k_p values for MA at various temperatures determined from PLP experiments conducted in MeOH and MeOH/H₂O mixtures. Experiments used DMPA as initiator. w_{MA} and v_{MA} are weight and volume fraction of monomer in solution, respectively, and α_{MeOH} is the weight fraction of MeOH (balance H₂O) in the solvent.

Т	W _{MA}	V _{MA}	C _{Initiator}	α_{MeOH}	f	$\log M_1$	NA /NA	RI $k_{p1} \cdot 10^{-3}$
(°C)			$(\text{mmol} \cdot L^{-1})$		(Hz)	RI	M_{1}/M_{2}	$(L \cdot mol^{-1} \cdot s^{-1})$
3	0.50	0.45	5.0	1.00	250	4.274	0.54	10.7
3	0.50	0.45	5.0	1.00	250	4.272	0.54	10.7
3	0.50	0.45	5.0	1.00	500	3.946	0.47	10.1
3	0.50	0.45	5.0	1.00	500	3.945	0.47	10.0
3	0.50	0.46	5.0	0.80	250	4.344	0.55	12.4
3	0.50	0.46	5.0	0.80	250	4.341	0.55	12.3
3	0.50	0.46	5.0	0.80	500	4.069	0.51	13.2
3	0.50	0.46	5.0	0.80	500	4.068	0.51	13.1
15	0.50	0.45	5.0	1.00	250	4.360	0.55	13.3
15	0.50	0.45	5.0	1.00	250	4.347	0.55	12.9
15	0.50	0.45	5.0	1.00	250	4.347	0.55	12.9
15	0.50	0.45	5.0	1.00	250	4.360	0.55	13.3
15	0.50	0.45	5.0	1.00	500	4.081	0.49	13.9
15	0.50	0.45	5.0	1.00	500	4.076	0.49	13.8
15	0.50	0.45	5.0	1.00	500	4.096	0.49	14.4
15	0.50	0.46	5.0	0.80	250	4.442	0.55	15.8
15	0.50	0.46	5.0	0.80	250	4.442	0.55	15.8
15	0.50	0.46	5.0	0.80	500	4.194	0.53	17.8
15	0.50	0.46	5.0	0.80	500	4.191	0.53	17.7
25	0.50	0.45	5.0	1.00	250	4.474	0.54	17.5
25	0.50	0.45	5.0	1.00	250	4.463	0.54	17.0
25	0.50	0.45	5.0	1.00	500	4.181	0.53	17.7
25	0.50	0.45	5.0	1.00	500	4.183	0.53	17.8
25	0.50	0.46	5.0	0.80	250	4.558	0.55	20.8
25	0.50	0.46	5.0	0.80	250	4.553	0.55	20.6
25	0.50	0.46	5.0	0.80	500	4.292	0.55	22.5
25	0.50	0.46	5.0	0.80	500	4.302	0.54	23.0
40	0.50	0.45	5.0	1.00	250	4.564	0.55	22.0
40	0.50	0.45	5.0	1.00	250	4.565	0.56	22.0
40	0.50	0.45	5.0	1.00	500	4.263	0.55	21.9
40	0.50	0.45	5.0	1.00	500	4.261	0.55	21.8
40	0.50	0.46	5.0	0.80	250	4.658	0.55	26.8
40	0.50	0.46	5.0	0.80	250	4.658	0.55	26.8

40	0.50	0.46	5.0	0.80	500	4.410	0.56	30.2
40	0.50	0.46	5.0	0.80	500	4.412	0.56	30.3
50	0.50	0.45	5.0	1.00	250	4.631	0.53	25.9
50	0.50	0.45	5.0	1.00	250	4.627	0.55	25.6
50	0.50	0.45	5.0	1.00	500	4.629	0.57	25.8
50	0.50	0.45	5.0	1.00	500	4.631	0.56	25.9
50	0.50	0.45	5.0	1.00	250	4.621	0.54	25.4
50	0.50	0.45	5.0	1.00	250	4.624	0.52	25.6
50	0.50	0.45	5.0	1.00	250	4.404	0.58	30.6
50	0.50	0.45	5.0	1.00	250	4.403	0.58	30.5
50	0.50	0.45	5.0	1.00	500	4.415	0.58	31.4
50	0.50	0.45	5.0	1.00	500	4.417	0.58	31.6
50	0.50	0.45	5.0	1.00	500	4.418	0.58	31.7
50	0.50	0.45	5.0	1.00	250	4.414	0.57	31.4
50	0.50	0.45	5.0	1.00	250	4.398	0.57	30.2
50	0.50	0.45	5.0	1.00	500	4.406	0.57	30.8
50	0.50	0.45	5.0	1.00	500	4.409	0.58	31.2
50	0.50	0.45	5.0	1.00	250	4.409	0.58	31.2
50	0.50	0.45	5.0	1.00	250	4.565	_	22.3
50	0.50	0.45	5.0	1.00	250	4.567	0.51	22.4
50	0.50	0.45	5.0	1.00	500	4.346	0.57	26.9
50	0.50	0.45	5.0	1.00	500	4.344	0.57	26.8
50	0.50	0.46	5.0	0.75	250	4.700	0.56	29.9
50	0.50	0.46	5.0	0.75	250	4.699	0.56	29.9
50	0.50	0.46	5.0	0.75	500	4.475	0.58	35.6
50	0.50	0.46	5.0	0.75	500	4.470	0.58	35.1
60	0.50	0.45	5.0	1.00	500	4.386	0.61	29.9
60	0.50	0.45	5.0	1.00	500	4.389	0.60	30.1
60	0.50	0.46	5.0	0.75	500	4.527	0.63	40.6
60	0.50	0.46	5.0	0.75	500	4.524	0.62	40.3

T	142		C	C	1 1/		DL $1 \ 10^{-3}$
$(^{\circ}C)$	WMA	VMA	$C_{Initiator}$	J	$\log M_1$	M_{1}/M_{2}	$KI \kappa_{p1} \cdot 10$
(\mathbf{C})			$(\text{mmol}\cdot L^{-1})$	(HZ)	KI	1 2	$(L \cdot mol^{-1} \cdot s^{-1})$
30	0.05	0.05	5.0	300	4.532	0.501	214.9
30	0.05	0.05	5.0	400	4.406	0.495	214.4
30	0.05	0.05	5.0	500	4.315	0.497	217.5
30	0.05	0.05	5.0	150	4.816	0.419	212.6
30	0.05	0.05	5.0	200	4.726	0.410	230.4
30	0.05	0.05	5.0	300	4.573	0.511	243.0
30	0.05	0.05	5.0	400	4.442	0.489	239.6
30	0.05	0.05	5.0	500	4.365	0.508	250.9
30	0.05	0.05	5.0	500	4.364	0.504	237.9
30	0.05	0.05	5.0	500	4.371	0.506	241.7
30	0.05	0.05	5.0	500	4.385	0.490	249.9
30	0.05	0.05	5.0	500	4.383	0.495	248.8
30	0.04	0.04	5.0	500	4.263	0.491	236.8
30	0.04	0.04	5.0	500	4.273	0.490	242.3
30	0.04	0.04	5.0	500	4.259	0.494	232.9
30	0.04	0.04	5.0	500	4.259	0.498	232.9
30	0.03	0.03	5.0	500	4.140	0.472	240.6
30	0.03	0.03	5.0	500	4.136	0.472	238.4
30	0.03	0.03	5.0	500	4.141	0.476	242.1
30	0.03	0.03	5.0	500	4.143	0.476	243.3
30	0.02	0.02	5.0	500	3.932	0.457	236.5
30	0.02	0.02	5.0	500	3.932	0.458	236.5
30	0.02	0.02	5.0	500	3.952	0.456	232.9
30	0.02	0.02	5.0	500	3.956	0.460	235.1
30	0.02	0.02	5.0	500	3.989	0.457	243.9
30	0.02	0.02	5.0	500	3.989	0.448	243.9
40	0.05	0.05	5.0	300	4.570	0.462	235.6
40	0.05	0.05	5.0	400	4.471	0.500	250.1
40	0.05	0.05	5.0	500	4.384	0.521	255.8
50	0.05	0.05	5.0	300	4.588	0.411	246.8
50	0.05	0.05	5.0	400	4.491	0.473	263.2
50	0.05	0.05	5.0	500	4.384	0.479	257.2

Table S12. k_p values for MA at various temperatures determined from PLP experiments conducted in H₂O using D1173 as initiator. w_{MA} and v_{MA} are weight and volume fraction of monomer in solution.

Figure S7. (a) *w*(log*M*) molar mass distribution and (b) differential *w*(log*M*) distribution for 10 wt % MA in EtOH at 30 °C at 300 Hz, 200 Hz and 400 Hz with 5 mmol·L⁻¹ D1173.

Figure S8. (a) $w(\log M)$ molar mass distribution and (b) differential $w(\log M)$ distribution for 50 wt % MA, $\alpha_{EtOH} = 0.75$ at 30 °C at 200 Hz, 300 Hz, 400 Hz and 500 Hz with 5 mmol·L⁻¹ D1173.

Figure S9. (a) $w(\log M)$ molar mass distribution and (b) differential $w(\log M)$ distribution for 10 wt % MA, $\alpha_{EtOH} = 0.75$) at 30 °C at 300 Hz, 400 Hz and 500 Hz with 5 mmol·L⁻¹ D1173.

	$\frac{A \cdot 10^{-7}}{(\text{L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1})}$	$\frac{E_A}{(\mathrm{kJ}\cdot\mathrm{mol}^{-1})}$	$k_p \cdot 10^{-3} (30 \text{ °C})$ (L·mol ⁻¹ ·s ⁻¹)	% increase from bulk k_p
bulk (IUPAC) ¹	1.41	17.3	14.7	
w_{MA} =0.55, α_{EtOH} =1.00 and w_{MA} =0.50, α_{MeOH} =1.00 (combined fit)	0.24±0.27	12.1±3.1	19.3	30
w_{MA} =0.53, α_{EtOH} =0.75 and w_{MA} =0.50, α_{MeOH} =0.80 (combined fit)	0.60±1.07	13.9±4.7	24.1	60

Table S13. Arrhenius parameters determined from fitting of MA k_p results.

Table S14. Best-fit values of *C*, with 95% confidence intervals, at 30 °C from functional representation of $k_p^{MEA}\left(\frac{L}{\text{mol-s}}\right) = k_{p, \ bulk}^{MEA}[A+(1-A)\cdot \exp(-C\cdot w_{sol})]$, with A = 0. Note: α_x is the weight fraction of alcohol in the solvent where *x* being the solvent identity.

Solvent	α_x	С
MeOH	1.00	-0.292 ± 0.104
MeOH/H ₂ O	0.70	-0.696 ± 0.209
MeOH/H ₂ O	0.44	-1.348 ± 0.113
MeOH/H ₂ O	0.20	-1.730 ± 0.244
EtOH	1.00	-0.435 ± 0.173
EtOH/H ₂ O	0.70	-0.647 ± 0.091
BuOH	1.00	-0.642 ± 0.130

Table S15. Best-fit values of C, with 95% confidence intervals, from functional representation of $k_p^{MA}\left(\frac{L}{\text{mol-s}}\right) = k_{p, bulk}^{MA} [A + (1 - A) \cdot \exp(-C \cdot w_{sol})]$, with A = 0 at different temperatures.

Solvent	α_{EtOH}	<i>C</i> (30 °C)	<i>C</i> (40 °C)	<i>C</i> (50 °C)	<i>C</i> (60 °C)
EtOH	1.00	-0.863 ± 0.084	-0.714 ± 0.267	-0.593 ± 0.325	-0.426 ± 0.332
EtOH/H ₂ O	0.75	-1.205 ± 0.150	-1.033	-0.876	-0.700
EtOH/H ₂ O	0.70	—	-0.947	-0.830	—
EtOH/H ₂ O	0.50	-1.656 ± 0.086	-1.462	-1.383	-1.238
EtOH/H ₂ O	0.25	-2.378 ± 0.094	-2.140	-1.994	—
H ₂ O	0.00	-2.890 ± 0.037	-2.741 ± 0.007	-2.568	_

Table S16. Best-fit values of A and C, with 95% confidence intervals, from functional representation of $k_p^{AA} \left(\frac{L}{\text{mol-s}}\right) = k_{p, \text{ bulk}}^{AA} [A + (1 - A) \cdot \exp(-C \cdot w_{sol})]$, at 25 °C, with C = -2.5.

Solvent	α_x	A
EtOH	1.00	1.077 ± 0.017
EtOH/H ₂ O	0.44	$0.947{\pm}0.017$
EtOH/H ₂ O	0.00	$0.627{\pm}0.058$

Figure S10. Parameter A and C from fitting of k_p expression to PLP data as a function of $\alpha_{alcohol}$ (balance H₂O) for MA (EtOH), MEA (MeOH) and AA (EtOH). Note: A = 0 for MEA and MA, and C = -2.5 for AA.

Table S17. k_p values for AA determined from PLP experiments conducted in EtOH/H₂O solutions. Experiments used DMPA as initiator unless otherwise indicated (^aLiTPO initiator). Experiments were conducted at 25 °C unless otherwise indicated (^b20 °C). N_p is the number of pulses performed on the sample, w_{AA} is weight fraction of monomer in solution and α_{EtOH} is the weight fraction of EtOH (balance H₂O) in the solvent. Note: the fit in Figure 8 at $\alpha_{EtOH} = 0$, uses a combination of previously published data ($w_{AA} = 0.20$, 0.40 at 25 °C)¹⁰ and data determined in this current work, $w_{AA} = 0.05$, 0.10 at 25 °C, and $w_{AA} = 0.76$ at 20 °C adjusted to 25 °C assuming AA E_A at $w_{AA} = 0.40$ (12.2 kJ·mol⁻¹).¹⁰

142	Solvent	(I T ON	C _{Initiator}	f	Nn	$\log M_1$	M_{\star}/M_{\star}	RI $k_{p1} \cdot 10^{-3}$	Notes
"AA	Sorvent	₩EtOH	$(\text{mmol} \cdot L^{-1})$	(Hz)	110	RI	101/1012	$(L \cdot mol^{-1} \cdot s^{-1})$	
			5.0	250	25	5.104	-	29.4	
			5.0	250	25	5.099	-	29.0	
			5.0	250	50	5.113	-	30.1	
0.84	EtOH	1.00	5.0	250	50	5.110	-	29.9	
0.84	LIOII	1.00	5.0	500	50	4.810	0.53	29.9	
			5.0	500	50	4.812	0.53	30.1	
			5.0	500	100	4.839	0.53	32.0	
			5.0	500	100	4.833	0.53	31.6	
			5.0	250	100	4.957	0.59	28.6	
			5.0	250	100	4.960	0.60	28.8	
			5.0	250	200	4.988	0.67	31.1	
0.65	E+OU	1.00	5.0	250	200	4.988	-	31.1	
0.05	LIOII	1.00	5.0	500	200	4.685	0.52	30.9	
			5.0	500	200	4.685	0.53	30.9	
			5.0	500	300	4.730	0.55	34.6	
			5.0	500	300	4.722	0.54	33.9	
		1.00	5.0	250	100	4.681	0.54	23.1	
			5.0	250	100	4.680	0.54	23.1	
			5.0	250	200	4.684	0.54	23.3	
0.45	E+OU		5.0	250	200	4.689	0.55	23.6	
0.45	LIOII	1.00	5.0	500	100	4.318	0.45	20.0	
			5.0	500	100	4.323	0.45	20.2	
			5.0	500	200	4.344	0.46	21.4	
			5.0	500	200	4.345	0.46	21.5	
			5.0	250	150	4.068	0.45	13.9	
			5.0	250	150	4.064	0.44	13.7	
			5.0	250	300	4.065	0.45	13.9	
0.20	E+OU	1.00	5.0	250	300	4.066	0.45	13.9	
0.20	ElOII	1.00	5.0	500	150	3.700	0.41	11.9	
			5.0	500	150	3.703	0.41	12.0	
			5.0	500	300	3.711	0.42	12.3	
			5.0	500	300	3.706	0.42	12.1	
0.06	EtOH	1.00	5.0	200	300	3.483	0.41	9.5	

			5.0	200	300	3.482	0.42	9.5	
			5.0	200	600	3.472	-	9.3	
			5.0	200	600	3.471	-	9.3	
			5.0	400	300	3.308	-	12.6	
			5.0	400	300	3.318	-	12.9	
			5.0	400	600	3.346	-	13.9	
			5.0	400	600	3.347	-	13.9	
			5.0	250	25	5.136	-	34.4	
			5.0	250	25	5.137	-	34.4	
			5.0	250	50	5.144	-	35.1	
0.70	EtOH/		5.0	250	50	5.147	-	35.4	
0.79	H ₂ O	0.44	5.0	500	50	4.849	0.52	35.5	
			5.0	500	50	4.838	0.51	34.6	
			5.0	500	100	4.875	0.52	37.9	
			5.0	500	100	4.890	0.53	39.3	
			5.0	250	50	5.056	0.62	39.5	
			5.0	250	50	5.057	0.63	39.6	
			5.0	250	100	5.076	-	41.7	
0.50	EtOH/	0.44	5.0	250	100	5.074	-	41.5	
0.59	H ₂ O	0.44	5.0	500	50	4.749	0.51	38.9	
			5.0	500	50	4.749	0.50	38.9	
			5.0	500	100	4.760	0.50	40.0	
			5.0	500	100	4.763	0.51	40.3	
			5.0	250	50	4.915	0.56	44.1	
			5.0	250	50	4.913	0.56	43.9	
		0.44	5.0	250	100	4.926	0.57	45.5	
0.40	EtOH/		5.0	250	100	4.926	0.56	45.5	
0.40	H ₂ O	0.44	5.0	500	50	4.600	0.50	42.6	
			5.0	500	50	4.598	0.49	42.4	
			5.0	500	100	4.612	0.49	44.1	
			5.0	500	100	4.613	0.50	44.2	
			5.0	250	150	4.636	0.53	47.5	
			5.0	250	150	4.644	0.54	48.4	
			5.0	250	200	4.658	0.54	50.3	
0.20	EtOH/	0.44	5.0	250	200	4.652	0.53	49.6	
0.20	H ₂ O	0.44	5.0	500	150	4.298	0.45	43.7	
			5.0	500	150	4.298	0.46	43.7	
			5.0	500	200	4.298	0.46	43.8	
			5.0	500	200	4.299	0.45	43.9	
			3.0	250	150	4.425	0.50	54.0	a
			3.0	250	150	4.425	0.51	54.0	a
0.11	EtOH/	0.44	3.0	250	300	4.432	0.51	56.2	a
0.11	H ₂ O	0.44	3.0	250	300	4.431	0.50	56.1	a
			3.0	500	150	4.081	0.44	48.8	a
			3.0	500	150	4.075	0.43	48.1	а

			3.0	500	300	4.078	0.43	49.4	а
			3.0	500	300	4.079	0.44	49.5	а
			5.0	250	150	4.334	0.50	46.6	
			5.0	250	150	4.340	0.49	47.3	
			5.0	250	300	4.316	0.49	45.6	
0.10 EtOH/ H ₂ O		5.0	250	300	4.321	0.49	46.1		
	0.44	5.0	500	150	3.971	0.44	40.2		
			5.0	500	150	3.967	0.42	39.8	
			5.0	500	300	3.974	0.44	41.0	
			5.0	500	300	3.970	0.44	40.6	
			3.0	250	150	4.126	0.49	53.2	а
			3.0	250	150	4.106	0.47	50.8	а
			3.0	250	300	4.083	0.47	49.2	а
0.07	EtOH/		3.0	250	300	4.082	0.47	49.1	а
0.06	H ₂ O	0.44	3.0	500	150	3.762	0.46	45.9	а
			3.0	500	150	3.751	0.45	44.7	а
			3.0	500	300	3.734	0.45	43.8	а
			3.0	500	300	3.732	0.44	43.6	а
			5.0	250	150	3.975	0.43	41.4	
			5.0	250	150	3.980	0.44	41.9	
			5.0	250	300	3.954	0.44	39.8	
0.05	EtOH/	0.44	5.0	250	300	3.956	0.44	40.0	
0.05	H ₂ O	0.44	5.0	500	150	3.623	0.42	36.9	
			5.0	500	150	3.629	0.43	37.4	
			5.0	500	300	3.606	0.42	35.6	
			5.0	500	300	3.625	0.44	37.2	
			2.0	250	25	5.216	0.62	40.0	b
			2.0	250	25	5.213	0.64	39.7	b
			2.0	250	50	5.218	0.61	40.2	b
			2.0	250	50	5.218	0.62	40.2	b
			2.0	500	25	4.899	0.43	38.6	b
			2.0	500	25	4.909	0.46	39.5	b
			5.0	250	25	5.217	0.62	40.2	b
			5.0	250	25	5.215	0.62	40.0	b
			5.0	250	25	5.219	0.62	40.4	b
0.76	H ₂ O	0.00	5.0	250	25	5.217	0.62	40.2	b
			5.0	250	50	5.244	0.65	43.0	b
			5.0	250	50	5.243	0.65	42.9	b
			5.0	250	50	5.217	0.63	40.2	b
			5.0	250	50	5.219	0.63	40.3	b
			5.0	500	25	4.884	0.46	37.4	b
			5.0	500	25	4.891	0.46	38.0	b
			5.0	500	25	4.887	0.46	37.6	b
			5.0	500	25	4.890	0.46	37.9	b
			5.0	500	50	4.896	0.46	38.4	b

			5.0	500	50	4.896	0.47	38.4	b
			5.0	500	50	4.904	0.46	39.2	b
			5.0	500	50	4.909	0.46	39.6	b
			5.0	500	100	4.940	0.46	42.9	b
			5.0	500	100	4.943	0.47	43.2	b
			5.0	500	200	5.034	0.53	53.8	b
0.10	H2O	0.00	3.0	250	50	4.806	0.61	125.8	а
			3.0	250	50	4.807	0.60	126.1	а
			3.0	250	150	4.812	0.60	131.5	а
			3.0	250	150	4.809	0.60	130.6	а
			3.0	500	50	4.484	0.53	119.7	а
			3.0	500	50	4.483	0.52	119.4	а
			3.0	500	150	4.488	0.54	123.5	а
			3.0	500	150	4.491	0.55	124.4	а
0.05	H ₂ O	0.00	3.0	250	50	4.610	0.59	176.3	а
			3.0	250	50	4.611	0.50	176.6	а
			3.0	250	150	4.606	0.53	179.8	а
			3.0	250	150	4.597	0.52	176.2	а
			3.0	500	50	4.246	0.56	152.0	а
			3.0	500	50	4.251	0.56	153.8	а
			3.0	500	150	4.251	0.57	158.1	а
			3.0	500	150	4.249	0.58	157.3	a

Table S18. k_p values for AA determined from PLP experiments at $w_{AA} = 0.20$ in DMF. Experiments used DMPA as initiator and were conducted at 25 °C. N_p is the number of pulses performed on the sample and $C_{initiator} = 10 \text{ mmol}\cdot\text{L}^{-1}$.

f (Hz)	Np	$\log M_1$ RI	M_{1}/M_{2}	RI $k_{p1} \cdot 10^{-3}$ (L·mol ⁻¹ ·s ⁻¹)
250	300	4.096	0.42	12.5
250	300	4.099	0.42	12.6
250	300	4.103	0.42	12.7
250	600	4.104	0.47	12.8
250	600	4.104	0.43	12.9
250	600	4.103	0.42	12.8
500	300	3.733	0.41	10.9
500	300	3.736	0.40	10.9
500	300	3.735	0.40	10.9
500	600	3.745	0.41	11.2
500	600	3.746	0.40	11.2
500	600	3.742	0.4	11.1

References

- (1) C. Barner-Kowollik, S. Beuermann, M. Buback, P. Castignolles, B. Charleux, M. L Coote, R. A. Hutchinson, T. Junkers, I. Lacík, G. T. Russell, M. Stach and A. M. van Herk, *Polym Chem.*, 2014, **5**, 204–212.
- (2) J. E. S. Schier, PhD Thesis, Queen's University, Kingston, ON Canada, 2017
- (3) N. F. G. Wittenberg, C. Preusser, H. Kattner, M. Stach, I. Lacík, R. A. Hutchinson and M. Buback, *Macromol. React Eng.*, 2016, **10**, 95–107.
- (4) S. Z. Mikhail and W. R. Kimel, J. Chem. Eng. Data., 1961, 6, 533–537.
- (5) K. Liang and R. A. Hutchinson, *Macromolecules*, 2010, **43**, 6311–6320.
- (6) M. T. Zafarani-Moattar and N. Tohidifar, J. Chem. Eng. Data. 2008, 53, 785–793.
- (7) R. H. Perry and D. W Green, *in Perry's Chemical Engineers' Handbook*; McGraw-Hill, 1997.
- (8) J. E. S. Schier, D. Cohen-Sacal and R. A. Hutchinson, *Polym. Chem.*, 2017, **8**, 1943–1952.
- (9) A. N. Nikitin, I. Lacík, R. A. Hutchinson, M. Buback and G. T. Russell, *Macromolecules* 2019, **52**, 55–71.
- (10) I. Lacík, S. Beuermann and M. Buback, Macromolecules, 2001, 34, 6224–6228.