Supporting information

for

Synthesis and Properties of Block Gradient Copolymers Composed of Norbornene and Higher α -Olefins Using *ansa*-Fluorenylamidodimethyltitanium-[Ph₃C][B(C₆F₅)₄] Catalyst System

by

Haobo Yuan[†], Takumitsu Kida[†], Ryo Tanaka[†], Zhengguo Cai[‡], Yuushou Nakayama[†], Takeshi Shiono^{*,†}

†Graduate School of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Japan
‡State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China

Contents

1.	GPC curves of NB/O and NB/Do pseudo-random copolymers	2
2.	Weight fractions of NB/ α -olefin block copolymers in obtained post polymers	3
3.	Visible light transmittance curves of diblock- and triblock-gradient NB/O copolymer films	4
4.	TGA and DSC curves of NB/ α -olefin copolymers	5
5.	One-dimensional SAXS results of NB/O copolymer films	6
6.	SPM images of gradient and block NB/O copolymer films	7
7.	Elongation test results of NB/ α -olefin copolymer films before annealing	8
8.	Temperature dependences of tangent delta of NB/O block copolymers1	0

1. GPC curves of NB/O and NB/Do pseudo-random copolymers

The shoulder peak in GPC curve of $P(NB-co-O)_n$ was an experimental error caused by manual monomer dropping operation during copolymerization.

2. Weight fractions of NB/ α -olefin block copolymers in obtained post

polymers

The weight fractions of NB/O and NB/Do block copolymers in the obtained post polymers were calculated from their integral areas of the corresponding peaks in GPC curves. Each GPC curve was fitted with a sum of Gaussian functions using Igor Pro 8 software. The fitting error of the peak area was less than $\pm 2.5\%$.

Fig. S2 Fitting results of molecular weight distribution curves of $P(NB-co-O)_2-1$ (a) and $P(NB-co-O)_3-1$ (b). The red line represents the fitting curve from a sum of Gaussian functions (blue lines).

sample	Gradient content (wt.%)	Diblock content (wt.%)	Triblock content (wt.%)
P(NB-co-O) ₂ -1	12	89	-
P(NB-co-O) ₂ -2	11	89	-
P(NB-co-O) ₂ -3	15	85	-
P(NB-co-O) ₂ -4	17	83	-
P(NB-co-O) ₃ -1	6	27	68
P(NB-co-O) ₃ -2	6	25	69
P(NB-co-Do) ₂	17	83	_

Table S1 Weight fractions of NB/ α -olefin block copolymers in obtained post polymers

Determined from the relative peak area of each fraction after converting

3. Visible light transmittance curves of diblock- and triblock-gradient NB/O copolymer films

Fig. S3 Visible light transmittance curves (350 ~ 800 nm) of diblock- and triblock NB/O copolymer films.

Fig. S4 TGA curves of NB/ α -olefin copolymers.

Fig. S5 DSC curves of NB/ α -olefin copolymers. (a) gradient, di- and triblock NB/O copolymers; (b) gradient, diblock and pseudo-random NB/Do copolymers.

4. TGA and DSC curves of NB/ α -olefin copolymers

5. One-dimensional SAXS results of NB/O copolymer films

Experimental

One-dimensional small-angle X-ray scattering (SAXS) measurements were performed using a Nano-Viewer SAXS system (Rigaku, Japan) with Cu*Ka* radiation (40 kV and 30 mA). SAXS patterns were measured using an imaging plate with an exposure time of 30 min.

Fig. S6 One-dimensional SAXS profiles of (a) block copolymers and (b) gradient and pseudo-random NB/O copolymers.

6. SPM images of gradient and block NB/O copolymer films

Experimental

Scanning probe microscope (SPM) measurements were performed on a Dimension Icon SPM system (Bruker, America) with a RTESPA-300 probe using standard peak force quantitative nanomechanical mapping (QNM) mode (in air). The scan size was 3 μ m, and the scan rate was 0.5 Hz.

The samples were prepared as followed: The copolymer films made by a meltpressing procedure were first covered by a two-component epoxy resin adhesive, then the samples were cut from the films by a cryomicrotome under -115 °C.

Fig. S7 SPM images of gradient and block NB/O copolymer films. (a) gradient NB/O copolymer film (M_n = 77000, D = 1.18), height image; (b) gradient NB/O copolymer film, peak force error image; (c) gradient-block NB/O copolymer film (M_n = 73000, D = 1.44), height image; (b) gradient-block NB/O copolymer film, peak force error image.

Table S2 . Elongation test results of NB/ α -olefin copolymer films before annealing								
Sample	<i>M</i> n ^a (kg/mol)	Young modulus [♭] (MPa)	strength ^b (MPa)	strain at break ^b				
P(NB-co-O)-4	104	327 ± 14	6.5 ± 0.2	0.03 ± 0.01				
P(NB-co-O) ₂ -1	53	441 ± 30	17.1 ± 0.2	0.83 ± 0.42				
P(NB-co-O) ₂ -2	76	358 ± 9	16.2 ± 0.3	0.10 ± 0.01				
P(NB-co-O) ₂ -3	94	366 ± 5	11.9 ± 1.9	0.06 ± 0.03				
P(NB-co-O) ₃ -1	75	356 ± 10	16.4 ± 0.1	0.40 ± 0.31				
P(NB-co-O) ₃ -2	103	335 ± 12	13.6 ± 1.5	0.06 ± 0.01				
P(NB- <i>co-</i> O) _n	106	766 ± 5	21.8 ± 1.6	0.04 ± 0.01				
P(NB-co-O)-3	141	312 ± 3	9.7 ± 0.3	0.11 ± 0.05				
P(NB-co-O) ₂ -4	125	239 ± 6	10.0 ± 1.2	1.13 ± 0.05				
P(NB <i>-co-</i> Do)	124	158 ± 15	4.8 ± 0.2	0.22 ± 0.10				
P(NB-co-Do) ₂	114	77 ± 2	7.5 ± 0.1	2.85 ± 0.15				
P(NB- <i>co-</i> Do) _n	129	151 ± 3	6.1 ± 0.4	0.06 ± 0.02				

7. Elongation test results of NB/ α -olefin copolymer films before

^a Determined by GPC (THF; 40 °C; polystyrene standards). ^b Determined by elongation test.

annealing

Fig. S8 Stress-strain curves of NB/ α -olefin copolymer films prepared without annealing procedure. (a) gradient, diblock, triblock and pseudo-random NB/O copolymer films. (NB = 50 mol%) (b) diblock and triblock NB/O copolymer films with different block length. (NB = 50 mol%) (c) NB/Do and NB/O copolymer films with the same NB wt.% (NB = 36 wt.%).

8. Temperature dependences of tangent delta of NB/O block copolymers

Fig. S9 Temperature dependences of the tangent delt of (a) diblock and (b) triblock NB/O copolymers