Supporting Information for:

RAFT dispersion polymerization of benzyl methacrylate in non-polar media

using hydrogenated polybutadiene as a steric stabilizer block

Bastien Darmau, Matthew J. Rymaruk*, Nicholas J. Warren, Robert Bening and Steven P. Armes*

Summary of the additional synthesis details and characterization data

S2. Additional experimental details for the PISA formulations used in this study

S3. UV GPC curves recorded at 298 nm for the small molecule CTA and the PhB₈₀ macro-CTA

S4. UV spectra and Beer-Lambert plot recorded for the trithiocarbonate-based RAFT agent

S5. Summary of the diblock copolymer characterization data used to construct the phase diagram

S6. GPC curves recorded for PHB_{80} -PBzMA₄₀ using UV and refractive index detectors

S7. Plot of GPC M_n vs. target PBzMA DP for a series of five PhBD₈₀-PBzMA_x diblock copolymers and the corresponding PhBD₈₀ macro-CTA

S8. Storage and loss moduli recorded during a strain sweep conducted on $PhBD_{80}$ -PBzMA₄₀ worms in *n*-dodecane over a range of copolymer concentrations

S9. Storage and loss moduli recorded during a frequency sweep conducted on $PhBD_{80}$ -PBzMA₄₀ worms in *n*-dodecane over a range of copolymer concentrations

Additional experimental details for the PISA formulations used in this study

Synthesis of PhBD-PBzMA worms by RAFT dispersion polymerization of BzMA

A typical synthesis of PhBD-PBzMA₄₀ worms at 40% w/w in *n*-dodecane was conducted as follows: PhBD RAFT agent (0.30 g, 62.0 µmol), BzMA (0.42 g, 2.39 mmol, target DP = 40 assuming a mean degree of esterification of 96% for this PhBD precursor) and *n*-dodecane (1.08 g) were weighed into a 10 mL glass vial equipped with a magnetic stirrer. T21s initiator (2.70 mg, 12.4 µmol, [PhBD]/[T21s] molar ratio = 5.0; 29 µL of a 10% v/v solution in *n*-dodecane) was added to this solution at 20 °C. The resulting mixture was then purged with nitrogen, sealed, and placed in a preheated oil bath set at 90 °C for 5 h. After cooling to 25 °C, the final dispersion was obtained as a yellow free-standing gel. ¹H NMR spectroscopy studies (CDCl₃) confirmed a BzMA conversion of 99 %, and THF GPC indicated an M_n of 14 300 g mol⁻¹ and an M_w/M_n of 1.17.

Synthesis of PhBD-PBzMA spheres by RAFT dispersion polymerization of BzMA

A typical synthesis of PhBD-PBzMA₃₀₀ spheres at 25% w/w in *n*-dodecane was conducted as follows: PhBD RAFT agent (0.10 g, 23.1 µmol), BzMA (1.15 g, 6.50 mmol, target DP = 300 assuming a mean degree of esterification of 95% for this PhBD precursor) and *n*-dodecane (3.74 g) were weighed into a 10 mL glass vial equipped with a magnetic stirrer. T21s initiator (1.0 mg, 4.63 µmol, [PhBD]/[T21s] molar ratio = 5.0; 11 µL of a 10% v/v solution in *n*-dodecane) was added to this solution at 20 °C. The resulting mixture was then purged with nitrogen, sealed, and placed in a preheated oil bath set at 90 °C for 5 h. After cooling to 25 °C, the final dispersion was obtained as a turbid yellow free-flowing dispersion. ¹H NMR spectroscopy studies

(CDCl₃) confirmed a BzMA conversion of 98 %, and THF GPC analysis indicated an M_n of 50 000 g mol⁻¹ and an M_w/M_n of 1.23.

Figure S1. UV GPC curves recorded at λ = 298 nm using THF eluent for PETTC RAFT agent and the purified PhBD₈₀ macro-CTA. The absence of any PETTC signal in the PhBD₈₀ macro-CTA GPC trace confirms that the purification protocol was successful.

Figure S2. (a) UV spectra recorded for the PETTC RAFT agent dissolved in dichloromethane at various concentrations. (b) Beer-Lambert calibration curve constructed using the absorbance data shown in (a).

Concentration (mol L⁻¹ x 10⁻⁴)

0.40

0.60

0.80

1.00

0.00

0.20

Table S1. Summary of characterization data obtained for the diblock copolymers used to construct the phase diagram. BzMA conversions were determined by ¹H NMR, molecular weighs were assessed via THF GPC and calibrated against near-monodisperse PMMA standards.

Target Diblock	Copolymer	BzMA	M _n	M _w /M _n	Copolymer
Copolymer	concentration	conversion			morphology
Composition	%w/w	%			assigned by TEM
PhBD ₈₀ -PBzMA ₄₀	45	98	14 600	1.10	Worms
PhBD ₈₀ -PBzMA ₅₀	45	99	17 000	1.10	Worms
PhBD ₈₀ -PBzMA ₆₀	45	99	18 000	1.13	Mixed
PhBD ₈₀ -PBzMA ₇₀	45	97	19 100	1.13	Mixed
PhBD ₈₀ -PBzMA ₈₀	45	99	19 900	1.20	Mixed
PhBD ₈₀ -PBzMA ₁₀₀	45	99	24 700	1.13	Mixed
PhBD ₈₀ -PBzMA ₁₅₀	45	98	33 000	1.15	Mixed
PhBD ₈₀ -PBzMA ₂₀₀	45	98	39 600	1.22	Vesicles
PhBD ₈₀ -PBzMA ₂₅₀	45	98	42 300	1.18	Vesicles
PhBD ₈₀ -PBzMA ₃₀₀	45	98	52 800	1.21	Vesicles
PhBD ₈₀ -PBzMA ₄₀	40	97	14 300	1.10	Worms
PhBD ₈₀ -PBzMA ₅₀	40	98	17 100	1.11	Worms
PhBD ₈₀ -PBzMA ₆₀	40	98	18 100	1.13	Mixed
PhBD ₈₀ -PBzMA ₇₀	40	98	19 200	1.13	Mixed
PhBD ₈₀ -PBzMA ₈₀	40	96	20 200	1.16	Mixed
PhBD ₈₀ -PBzMA ₁₅₀	40	98	30 400	1.16	Mixed
PhBD ₈₀ -PBzMA ₂₀₀	40	99	37 500	1.19	Mixed
PhBD ₈₀ -PBzMA ₂₅₀	40	98	43 300	1.19	Vesicles
PhBD ₈₀ -PBzMA ₃₀₀	40	98	49 600	1.20	Vesicles
PhBD ₈₀ -PBzMA ₃₀	35	97	13 900	1.10	Mixed
PhBD ₈₀ -PBzMA ₄₀	35	98	14 700	1.10	Mixed
PhBD ₈₀ -PBzMA ₅₀	35	98	17 200	1.10	Mixed
PhBD ₈₀ -PBzMA ₆₀	35	98	18 700	1.13	Mixed
PhBD ₈₀ -PBzMA ₇₀	35	97	19 600	1.14	Mixed
PhBD ₈₀ -PBzMA ₁₀₀	35	98	24 300	1.12	Mixed
PhBD ₈₀ -PBzMA ₁₅₀	35	98	30 700	1.15	Mixed
PhBD ₈₀ -PBzMA ₂₀₀	35	98	38 200	1.17	Mixed
PhBD ₈₀ -PBzMA ₂₅₀	35	98	45 500	1.19	Mixed
PhBD ₈₀ -PBzMA ₃₀₀	35	98	56 100	1.25	Vesicles
PhBD ₈₀ -PBzMA ₃₀	30	96	13 700	1.10	Spheres
PhBD ₈₀ -PBzMA ₅₀	30	97	17 200	1.10	Spheres
PhBD ₈₀ -PBzMA ₁₀₀	30	98	23 900	1.13	Spheres
PhBD ₈₀ -PBzMA ₁₅₀	30	98	30 800	1.15	Mixed
PhBD ₈₀ -PBzMA ₂₀₀	30	98	37 600	1.17	Mixed
PhBD ₈₀ -PBzMA ₂₅₀	30	98	45 900	1.20	Mixed
PhBD ₈₀ -PBzMA ₃₀₀	30	98	50 000	1.22	Mixed
PhBD ₈₀ -PBzMA ₃₀	25	98	13 400	1.10	Spheres
PhBD ₈₀ -PBzMA ₅₀	25	97	17 400	1.11	Spheres
PhBD ₈₀ -PBzMA ₁₀₀	25	97	24 700	1.12	Spheres
PhBD ₈₀ -PBzMA ₁₅₀	25	98	32 200	1.15	Spheres
PhBD ₈₀ -PBzMA ₂₀₀	25	98	44 700	1.21	Spheres
PhBD ₈₀ -PBzMA ₂₅₀	25	98	45 000	1.20	Spheres
PhBD ₈₀ -PBzMA ₃₀₀	25	98	50 100	1.23	Spheres

Figure S3. GPC curves obtained for PhBD₈₀-PBzMA₄₀ diblock copolymers prepared at 40% w/w in *n*-dodecane recorded using either a UV detector tuned to 298 nm (upper red curve) or a refractive index (RI) detector (lower blue curve) [N.B. The UV detector was connected in series with the RI detector, hence these two curves are offset by approximately 30 seconds]. The presence of a low molecular weight sholder in both curves indicates that this feature corresponds to unreacted trithiocarbonate-capped PhBD macro-CTA, rather than non-esterified PhBD precursor (because the latter species does not absorb at 298 nm).

Figure S4. Plot of GPC M_n vs. target PBzMA DP (obtained using THF eluent and a series of PMMA standards) for a series of five PhBD₈₀-PBzMA_x diblock copolymers and the corresponding PhBD₈₀ macro-CTA prepared at 45% w/w solids in *n*-dodecane.

Figure S5. Storage moduli (G'; filled symbols) and loss moduli (G'; open symbols) obtained during a strain sweep conducted on PhBD₈₀-PBzMA₄₀ worms over a range of copolymer concentrations in *n*-dodecane: 40% w/w (red squares), 30% w/w (blue triangles), 20% w/w (black diamonds), 8% w/w (purple circles), 6% w/w (green circles) and 5% w/w (brown squares). In each case, the angular frequency was fixed at 1.0 rad s⁻¹.

Figure S6. Storage moduli (G'; filled symbols) and loss moduli (G''; open symbols) obtained during a frequency sweep conducted on PhBD₈₀-PBzMA₄₀ worms over a range of copolymer concentrations in *n*-dodecane: 40% w/w (red squares), 30% w/w (blue triangles), 20% w/w (black diamonds), 8% w/w (purple circles), 6% w/w (green circles) and 5% w/w (brown squares). In each case, the applied strain was 1%.