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1. Materials.

Scheme S1. Synthesis of diol-g-OEGm and PU-g-OEGm
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1.1 Synthesis of 2-phenyl-1,3-dioxan-5-ol

The acetalization of glycerol with benzaldehyde was achieved according to the literature.1 Glycerol 
(100 g, 1.1 mol), benzaldehyde (120 g, 1.1 mol), p-toluenesulfonic acid monohydrate (2 g, 0.01 
mol) were dissolved in 300 mL of benzene and refluxed with a Dean-Stark at 100˚C for 16 h. Then, 
the reaction mixture was recrystallized in 1600 mL of hexane/toluene (1/1, v/v) at -25˚C. This 
recrystallization step was repeated at least 3 times until it changed to needle-like crystals. Finally, 
the needle-like crystals were washed with hexane to obtain the product (64.8g, 360 mmol, yield 
36%).

1H NMR (400 MHz, CDCl3): δ3.07 (d, J = 10.0 Hz, 1H, OH), 3.61 (brd, J = 10.0 Hz, 1H), 4.09 
(dd, J = 12.0 and 1.5 Hz, 2H), 4.17 (dd, J = 12.0 and 1.5 Hz, 2H), 5.54 (s, 1H), 7.36 (m, 3H), 7.49 
(m, 2H).
HRMS (CI) calcd for C10H13O3 [M + H] 181.0865 found 181.08669.
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1.2 Synthesis of 5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane

2-phenyl-1,3-dioxan-5-ol (10 g, 56 mmol) and potassium hydroxide (5.6 g, 100 mmol) were 
refluxed in 200 mL of toluene at 120˚C for 3h with Dean-Stark apparatus to remove water and 
activated the alcohol. Next, after cooling to room temperature, 2-(2-(2-
methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (19 g, 60 mmol) was introduced with 
stirring at 80˚C overnight. The reaction mixture was extracted by H2O and CH2Cl2 to collect the 
organic layer. Then, the crude was purified by silica gel chromatography using hexane/ethyl 
acetate (1/1, v/v) to obtain (9.1 g, 28 mmol, yield 50%).

1H NMR (CDCl3, 400 MHz) δ:7.50 (m, 2H), 7.38―7.30 (m, 3H), 3.56 (m, 2H), 5.55 (s, 1H), 4.36 
(d, 2H), 4.05 (d, 2H), 3.79―3.62 (m, 10H), 3.56―3.52 (m, 2H), 3.42 (q, 1H), 3.38 (s, 3H).
FT-IR(cm-1): 2866, 1450, 1091.
HRMS (CI) calcd for C17H27O6 327.1808 [M + H] found 327.1802.

Figure S1. 1H NMR spectrum for 5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-
dioxane.
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1.3 Synthesis of 5-(2-(2-methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane

5-(2-(2-methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane was synthesized in the same procedure as 
5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane, except that 2-(2-(2-
methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (16.5 g, 60 mmol) was used instead of 2-
(2-methoxyethoxy)ethyl 4-methylbenzenesulfonate (19 g, 60 mmol). The reaction mixture was 
extracted by H2O and CH2Cl2 to collect the organic layer. Then, the crude was purified by silica 
gel chromatography using hexane/ethyl acetate (1/1, v/v) to obtain (8.1 g, 27 mmol, yield 48%).

1H NMR (CDCl3, 400 MHz) δ:7.50 (m, 2H), 7.38―7.30 (m, 3H), 3.56 (m, 2H), 5.55 (s, 1H), 4.36 
(d, 2H), 4.05 (d, 2H), 3.79―3.62 (m, 10H), 3.56―3.52 (m, 2H), 3.42 (q, 1H), 3.38 (s, 3H).
FT-IR(cm-1): 2870, 1450, 1095.
HRMS (ESI) calcd for C15H22Na1O5 305.13649 [M + Na] found 305.13597.

Figure S2. 1H NMR spectrum for 5-(2-(2-methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane.
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1.4 Synthesis of 5-(2-methoxyethoxy)-2-phenyl-1,3-dioxane

5-(2-methoxyethoxy)-2-phenyl-1,3-dioxane was synthesized in the same procedure as 5-(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane, except that 2-methoxyethyl 4-
methylbenzenesulfonate (13.8 g, 60 mmol) was used instead of 2-(2-methoxyethoxy)ethyl 4-
methylbenzenesulfonate (19 g, 60 mmol). The reaction mixture was extracted by H2O and CH2Cl2 
to collect the organic layer. Then, the crude was purified by silica gel chromatography using 
hexane/ethyl acetate (1/1, v/v) to obtain (3 g, 12.6 mmol, yield 22%).

1H NMR (CDCl3, 400 MHz) δ:7.50 (m, 2H), 7.38―7.30 (m, 3H), 5.55 (s, 1H), 4.36 (d, 2H), 4.05 
(d, 2H), 3.79―3.52 (m, 5H), 3.38 (s, 3H).
FT-IR(cm-1): 2856, 1452,1390, 1091.
HRMS (CI) calcd for C13H19O4 327.1808 [M + H] found 327.1802.

Figure S3. 1H NMR spectrum for 5-(2-methoxyethoxy)-2-phenyl-1,3-dioxane.
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1.5 Synthesis of 2-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)propane-1,3-diol(diol-g-OEG3)

The deprotection of the acetal of benzaldehyde on 5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-
phenyl-1,3-dioxane (9.1 g, 28 mmol) was achieved by stirring with 5 M HClaq in 100 mL of 
MeOH. The reaction mixture was extracted by H2O and CH2Cl2 to collect the water layer. A total 
5.7 g of diol-g-OEG3 was obtained (5.7 g, 24 mmol, yield 86%).

1H NMR (CDCl3, 400 MHz) δ: 3.85―3.52 (m, 17H), 3.38 (s, 3H), 2.83 (t, 2H).
FT-IR(cm-1): 3415, 2874, 1452, 1093.
HRMS (CI) calcd for C10H23O6 239.1495 [M + H] found 239.1487.

Figure S4. 1H NMR spectrum for diol-g-OEG3.
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1.6 Synthesis of 2-(2-(2-methoxyethoxy)ethoxy)propane-1,3-diol(diol-g-OEG2)

Diol-g-OEG2 was synthesized in the same procedure as diol-g-OEG3, except that 5-(2-(2-
methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane (5.6 g, 20 mmol) was used instead of 5-(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane (19.1 g, 28 mmol). The reaction mixture 
was extracted by H2O and CH2Cl2 to collect the water layer. A total 5.7 g of diol-g-OEG3 was 
obtaind (3.5 g, 18 mmol, yield 90%).

1H NMR (CDCl3, 400 MHz) δ: 3.85―3.52 (m, 12H), 3.38 (s, 3H), 2.83 (s, 2H).
FT-IR(cm-1): 3404, 2872, 1454, 1076.
HRMS (ESI) calcd for C8H18Na1O5 217.10519 [M + Na] found 217.10599.

Figure S5. 1H NMR spectrum for diol-g-OEG2.
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1.7 Synthesis of 2-(2-methoxyethoxy)propane-1,3-diol(diol-g-OEG1)

Diol-g-OEG1 was synthesized in the same procedure as diol-g-OEG3, except that 5-(2-
methoxyethoxy)-2-phenyl-1,3-dioxane (2.4 g, 10 mmol) was used instead of 5-(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane (19.1 g, 28 mmol). The reaction mixture 
was extracted by H2O and CH2Cl2 to collect the water layer. A total 5.7 g of diol-g-OEG3 was 
obtained (1.4 g, 9 mmol, yield 90%).

1H NMR (CDCl3, 400 MHz) δ: 3.88―3.30 (m, 9H), 3.38 (s, 3H), 2.83 (s, 2H).
FT-IR(cm-1): 3377, 2875, 1456, 1074.
HRMS (ESI) calcd for C6H14Na1O4 173.07898 [M + Na] found 173.07909.

Figure S6. 1H NMR spectrum for diol-g-OEG1.
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1.8 Polymerization

The typical procedure for polymerization was as follows. Diol monomers (4 mmol) was added to 
20 mL vial with septum rubber and dried under vacuum at 60˚C overnight. After the atmosphere 
in the vial was changed to N2 condition, one dropwise of DBTDL, 4 mL of anhydrous THF, HMDI 
(4 mmol) was add to the vial under N2 condition and stirred at 60˚C for 4 h. After the reaction, 
resultant polymer was precipitated into excess amount of diethyl ether.
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2. SEC profile

Figure S7. SEC profiles for PU-g-OEG3(a), PU-g-OEG2(b), PU-g-OEG1(c), PU-l-OEG5(d), PU-

l-OEG4(e), PU-l-OEG3(f).
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3. FT-IR spectra

Figure S8. FT-IR spectra for PU-g-OEG3(a), PU-g-OEG2(b), PU-g-OEG1(c), PU-l-OEG5(d), 

PU-l-OEG4(e), PU-l-OEG3(f).

Figure S9. C=O vibration peak fitting on FT-IR spectra for PU-g-OEG3(a), PU-g-OEG2(b), PU-

g-OEG1(c), PU-l-OEG5(d), PU-l-OEG4(e), PU-l-OEG3(f).
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4. Tensile test

Figure S10. Photograph for Hotpress film(a), tensile test piece(b), cylinder PU(c).
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Table S1. Summary of mechanical properties.

Sample Stress at break Strain at break
Young 

modulus Toughness Yielding

σb (MPa) εb (%) E (MPa) Ut (MJ/m3) σy (MPa)

PU-g-OEG3-119k 49.0 ± 3.5 219.3 ± 17.0 524.2 ± 28.1 74.5 ± 8.4 36.5 ± 1.0

PU-g-OEG3-38k 34.4 ± 2.4 187.3 ± 4.8 435.2 ± 31.1 52.0 ± 1.5 31.2 ± 2.1

PU-g-OEG3-25k 31.9 ± 1.1 186.9 ± 16.1 317.1 ± 25.6 40.5 ± 7.9 23.2 ± 2.1

PU-g-OEG2-72k 34.3 ± 1.9 124.2 ± 21.4 481.2 ± 25.7 37.4 ± 6.2 37.3 ± 2.2

PU-g-OEG2-49k 24.9 ± 1.2 168.5 ± 14.9 350.1 ± 7.4 33.5 ± 3.0 24.4 ± 0.3

PU-g-OEG2-12k 3.3 ± 0.1 4.0 ± 1.5 207.9 ± 75.2 0.1 ± 0.0

PU-g-OEG1 63.0 ± 3.6 19.0 ± 4.0 563.1 ± 6.0 7.9 ± 2.4

PU-l-OEG5 21.3 ± 2.5 300.9 ± 23.4 389.0 ± 21.3 54.4 ± 2.5 25.4 ± 0.4

PU-l-OEG4 14.4 ± 2.4 255.5 ± 39.8 198.9 ± 53.5 32.2 ± 9.5 14.2 ± 2.8

PU-l-OEG3 38.6 ± 0.9 311.9 ± 11.2 407.4 ± 65.1 106.7 ± 6.8 49.8 ± 0.7

PU-l-PDO 38.2 ± 6.3 4.8 ± 1.0 902.0 ± 122.2 1.2 ± 0.4
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5. Rheology

Table S2. Summary of rheological properties.

Sample

Mn

(kg/mol)

Mw/Mn C1 C2

η0

(Pa s)

GN0

(MPa)

nsc ng

PU-g-OEG3 13.2 1.91 9 110 2.1×107 0.77 5.5 9

PU-g-OEG3 22.7 1.66 8 100 6.3×107 0.88 5.5 9

PU-g-OEG3 58.1 2.04 9 120 1.4×109 0.98 5.5 9

PU-g-OEG2 7.1 1.63 9 120 2.7×106 0.76 4 9

PU-g-OEG2 22.8 2.16 8 120 4.2×107 0.98 4 9

PU-g-OEG2 28.6 2.51 10 100 1.7×108 0.99 4 9

PU-g-OEG1 18.2 4.71 9 120 1.2×108 0.95 2.5 9

PU-l-OEG5 6.9 1.54 7 120 1.1×104 1.0 ― ―

PU-l-OEG5 12.3 1.97 9 90 1.0×107 1.4 ― ―

PU-l-OEG5 26.8 1.57 9 90 2.6×107 1.6 ― ―

PU-l-OEG4 17.7 1.88 8 90 8.3×106 1.2 ― ―

PU-l-OEG4 57.7 2.00 8 100 5.2×107 1.4 ― ―

PU-l-OEG3 23.1 1.84 8 100 2.1×106 0.95 ― ―

PU-l-PDO
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Figure S11. Shift factors for PU derivatives (Tref = Tg + 50 ˚C).
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Figure S12. G' and G″ curves for PU-g-OEG3 with 80 ˚C (a), 90 ˚C (b), 100 ˚C (c), 110 ˚C (d), 
and 120 ˚C (e).
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Figure S13. G' and G″ curves for PU-g-OEG2 with 90 ˚C (a), 100 ˚C (b), 110 ˚C (c), and 120 ˚C 
(d).
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Figure S14. G' and G″ curves for PU-g-OEG1 with 130 ˚C (a), 140 ˚C (b), 150 ˚C (c), and 160 ˚C 
(d).
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Figure S15. G' and G″ curves for PU-l-OEG5 with 60 ˚C (a), 70 ˚C (b), 80 ˚C (c), 90 ˚C (d), 100 
˚C (e), and 110 ˚C (f).
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Figure S16. G' and G″ curves for PU-l-OEG4 with 70 ˚C (a), 80 ˚C (b), 90 ˚C (c), 110 ˚C (d), 120 
˚C (e), and 130 ˚C (f).
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Figure S17. G' and G″ curves for PU-l-OEG3 with 100 ˚C (a), 110 ˚C (b), 120 ˚C (c), 130 ˚C (d), 
and 140 ˚C (e).
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Figure S18. Arrhenius plots for PU-g-OEG3(a), PU-g-OEG2(b), PU-g-OEG1(c), PU-l-OEG5(d), 

PU-l-OEG4(e), PU-l-OEG3(f).
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Figure S19. Van Gurp-Palmen curves for PU-g-OEG3(a), PU-g-OEG2(b), PU-g-OEG1(c), PU-l-

OEG5(d), PU-l-OEG4(e), PU-l-OEG3(f).

Figure S20. Structural parameter for comb PUs.
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Figure S21. Reduced complex viscosity versus reduced frequency for PU-g-OEG3 (a), PU-g-

OEG2 (b), PU-g-OEG1 (c), PU-l-OEG5 (d), PU-l-OEG4 (e), and PU-l-OEG3 (f). Dashed fitting 

curves were calculated by Carreau-Yasuda model equation.2
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