Supporting Information

Clarification of the effects of topological isomer on mechanical

strength of comb polyurethane

Daisuke Aoki,¹ Hiroharu Ajiro¹

¹Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Nara 630-0192, Japan.

1. Materials.

Scheme S1. Synthesis of diol-g-OEG_m and PU-g-OEG_m

1.1 Synthesis of 2-phenyl-1,3-dioxan-5-ol

The acetalization of glycerol with benzaldehyde was achieved according to the literature.¹ Glycerol (100 g, 1.1 mol), benzaldehyde (120 g, 1.1 mol), *p*-toluenesulfonic acid monohydrate (2 g, 0.01 mol) were dissolved in 300 mL of benzene and refluxed with a Dean-Stark at 100°C for 16 h. Then, the reaction mixture was recrystallized in 1600 mL of hexane/toluene (1/1, v/v) at -25°C. This recrystallization step was repeated at least 3 times until it changed to needle-like crystals. Finally, the needle-like crystals were washed with hexane to obtain the product (64.8g, 360 mmol, yield 36%).

¹H NMR (400 MHz, CDCl₃): δ 3.07 (d, J = 10.0 Hz, 1H, OH), 3.61 (brd, J = 10.0 Hz, 1H), 4.09 (dd, J = 12.0 and 1.5 Hz, 2H), 4.17 (dd, J = 12.0 and 1.5 Hz, 2H), 5.54 (s, 1H), 7.36 (m, 3H), 7.49 (m, 2H).

HRMS (CI) calcd for $C_{10}H_{13}O_3$ [M + H] 181.0865 found 181.08669.

1.2 Synthesis of 5-(2-(2-(2-methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane

2-phenyl-1,3-dioxan-5-ol (10 g, 56 mmol) and potassium hydroxide (5.6 g, 100 mmol) were refluxed in 200 mL of toluene at 120°C for 3h with Dean-Stark apparatus to remove water and activated the alcohol. Next, after cooling to room temperature, 2 - (2 - (2 methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (19 g, 60 mmol) was introduced with stirring at 80°C overnight. The reaction mixture was extracted by H₂O and CH₂Cl₂ to collect the organic layer. Then, the crude was purified by silica gel chromatography using hexane/ethyl acetate (1/1, v/v) to obtain (9.1 g, 28 mmol, yield 50%).

¹H NMR (CDCl₃, 400 MHz) δ:7.50 (m, 2H), 7.38—7.30 (m, 3H), 3.56 (m, 2H), 5.55 (s, 1H), 4.36 (d, 2H), 4.05 (d, 2H), 3.79—3.62 (m, 10H), 3.56—3.52 (m, 2H), 3.42 (q, 1H), 3.38 (s, 3H). FT-IR(cm⁻¹): 2866, 1450, 1091.

HRMS (CI) calcd for $C_{17}H_{27}O_6$ 327.1808 [M + H] found 327.1802.

Figure S1. ¹H NMR spectrum for 5-(2-(2-(2-methoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane.

1.3 Synthesis of 5-(2-(2-methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane

5-(2-(2-methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane was synthesized in the same procedure as <math>5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane, except that <math>2-(2-(2-methoxyethoxy)ethoxy)ethyl) 4-methylbenzenesulfonate (16.5 g, 60 mmol) was used instead of 2-(2-methoxyethoxy)ethyl 4-methylbenzenesulfonate (19 g, 60 mmol). The reaction mixture was extracted by H₂O and CH₂Cl₂ to collect the organic layer. Then, the crude was purified by silica gel chromatography using hexane/ethyl acetate (1/1, v/v) to obtain (8.1 g, 27 mmol, yield 48%).

¹H NMR (CDCl₃, 400 MHz) δ:7.50 (m, 2H), 7.38—7.30 (m, 3H), 3.56 (m, 2H), 5.55 (s, 1H), 4.36 (d, 2H), 4.05 (d, 2H), 3.79—3.62 (m, 10H), 3.56—3.52 (m, 2H), 3.42 (q, 1H), 3.38 (s, 3H). FT-IR(cm⁻¹): 2870, 1450, 1095.

HRMS (ESI) calcd for $C_{15}H_{22}Na_1O_5$ 305.13649 [M + Na] found 305.13597.

Figure S2. ¹H NMR spectrum for 5-(2-(2-methoxyethoxy)ethoxy)-2-phenyl-1,3-dioxane.

1.4 Synthesis of 5-(2-methoxyethoxy)-2-phenyl-1,3-dioxane

5-(2-methoxyethoxy)-2-phenyl-1,3-dioxane was synthesized in the same procedure as <math>5-(2-(2-(2-methoxyethoxy))-2-phenyl-1,3-dioxane, except that 2-methoxyethyl 4-methylbenzenesulfonate (13.8 g, 60 mmol) was used instead of 2-(2-methoxyethoxy)ethyl 4-methylbenzenesulfonate (19 g, 60 mmol). The reaction mixture was extracted by H₂O and CH₂Cl₂ to collect the organic layer. Then, the crude was purified by silica gel chromatography using hexane/ethyl acetate (1/1, v/v) to obtain (3 g, 12.6 mmol, yield 22%).

¹H NMR (CDCl₃, 400 MHz) δ :7.50 (m, 2H), 7.38—7.30 (m, 3H), 5.55 (s, 1H), 4.36 (d, 2H), 4.05 (d, 2H), 3.79—3.52 (m, 5H), 3.38 (s, 3H). FT-IR(cm⁻¹): 2856, 1452,1390, 1091. HRMS (CI) calcd for C₁₃H₁₉O₄ 327.1808 [M + H] found 327.1802.

Figure S3. ¹H NMR spectrum for 5-(2-methoxyethoxy)-2-phenyl-1,3-dioxane.

1.5 Synthesis of 2-(2-(2-(2-methoxy)ethoxy)ethoxy)propane-1,3-diol(diol-g-OEG₃)

The deprotection of the acetal of benzaldehyde on 5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane (9.1 g, 28 mmol) was achieved by stirring with 5 M HClaq in 100 mL of MeOH. The reaction mixture was extracted by H_2O and CH_2Cl_2 to collect the water layer. A total 5.7 g of diol-g-OEG₃ was obtained (5.7 g, 24 mmol, yield 86%).

¹H NMR (CDCl₃, 400 MHz) δ : 3.85—3.52 (m, 17H), 3.38 (s, 3H), 2.83 (t, 2H). FT-IR(cm⁻¹): 3415, 2874, 1452, 1093. HRMS (CI) calcd for C₁₀H₂₃O₆ 239.1495 [M + H] found 239.1487.

Figure S4. ¹H NMR spectrum for diol-g-OEG₃.

1.6 Synthesis of 2-(2-(2-methoxy)ethoxy)propane-1,3-diol(diol-g-OEG₂)

Diol-g-OEG₂ was synthesized in the same procedure as diol-g-OEG₃, except that 5-(2-(2-methoxy)ethoxy)-2-phenyl-1,3-dioxane (5.6 g, 20 mmol) was used instead of 5-(2-(2-methoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane (19.1 g, 28 mmol). The reaction mixture was extracted by H₂O and CH₂Cl₂ to collect the water layer. A total 5.7 g of diol-g-OEG₃ was obtaind (3.5 g, 18 mmol, yield 90%).

¹H NMR (CDCl₃, 400 MHz) δ : 3.85—3.52 (m, 12H), 3.38 (s, 3H), 2.83 (s, 2H). FT-IR(cm⁻¹): 3404, 2872, 1454, 1076. HRMS (ESI) calcd for C₈H₁₈Na₁O₅ 217.10519 [M + Na] found 217.10599.

Figure S5. ¹H NMR spectrum for diol-*g*-OEG₂.

1.7 Synthesis of 2-(2-methoxyethoxy)propane-1,3-diol(diol-g-OEG₁)

Diol-g-OEG₁ was synthesized in the same procedure as diol-g-OEG₃, except that 5-(2-methoxyethoxy)-2-phenyl-1,3-dioxane (2.4 g, 10 mmol) was used instead of 5-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2-phenyl-1,3-dioxane (19.1 g, 28 mmol). The reaction mixture was extracted by H₂O and CH₂Cl₂ to collect the water layer. A total 5.7 g of diol-g-OEG₃ was obtained (1.4 g, 9 mmol, yield 90%).

¹H NMR (CDCl₃, 400 MHz) δ : 3.88—3.30 (m, 9H), 3.38 (s, 3H), 2.83 (s, 2H). FT-IR(cm⁻¹): 3377, 2875, 1456, 1074. HRMS (ESI) calcd for C₆H₁₄Na₁O₄ 173.07898 [M + Na] found 173.07909.

Figure S6. ¹H NMR spectrum for diol-g-OEG₁.

1.8 Polymerization

The typical procedure for polymerization was as follows. Diol monomers (4 mmol) was added to 20 mL vial with septum rubber and dried under vacuum at 60°C overnight. After the atmosphere in the vial was changed to N_2 condition, one dropwise of DBTDL, 4 mL of anhydrous THF, HMDI (4 mmol) was add to the vial under N_2 condition and stirred at 60°C for 4 h. After the reaction, resultant polymer was precipitated into excess amount of diethyl ether.

Figure S7. SEC profiles for PU-*g*-OEG₃(a), PU-*g*-OEG₂(b), PU-*g*-OEG₁(c), PU-*l*-OEG₅(d), PU-*l*-OEG₄(e), PU-*l*-OEG₃(f).

3. FT-IR spectra

Figure S8. FT-IR spectra for PU-g-OEG₃(a), PU-g-OEG₂(b), PU-g-OEG₁(c), PU-l-OEG₅(d),

PU-*l*-OEG₄(e), PU-*l*-OEG₃(f).

Figure S9. C=O vibration peak fitting on FT-IR spectra for PU-*g*-OEG₃(a), PU-*g*-OEG₂(b), PU-*g*-OEG₁(c), PU-*l*-OEG₅(d), PU-*l*-OEG₄(e), PU-*l*-OEG₃(f).

4. Tensile test

Figure S10. Photograph for Hotpress film(a), tensile test piece(b), cylinder PU(c).

Sample	Stress at break			Strain at break			Young modulus		Toughness		Yielding				
	$\sigma_{ m b}$ (MPa)		ε _b (%)			<i>E</i> (MPa)		<i>U</i> t (MJ/m3)		$\sigma_{\rm v}$ (MPa)					
PU- <i>g</i> -OEG₃-119k	49.0	±	3.5	219.3	±	17.0	524.2	±	28.1	74.5	±	8.4	36.5	±	1.0
PU <i>-g-</i> OEG₃-38k	34.4	±	2.4	187.3	±	4.8	435.2	±	31.1	52.0	±	1.5	31.2	±	2.1
PU- <i>g-</i> OEG₃-25k	31.9	±	1.1	186.9	±	16.1	317.1	±	25.6	40.5	±	7.9	23.2	±	2.1
PU-g-OEG ₂ -72k	34.3	±	1.9	124.2	±	21.4	481.2	±	25.7	37.4	±	6.2	37.3	±	2.2
PU- <i>g-</i> OEG ₂ -49k	24.9	±	1.2	168.5	±	14.9	350.1	±	7.4	33.5	±	3.0	24.4	±	0.3
PU-g-OEG ₂ -12k	3.3	±	0.1	4.0	±	1.5	207.9	±	75.2	0.1	±	0.0			
PU-g-OEG₁	63.0	±	3.6	19.0	±	4.0	563.1	±	6.0	7.9	±	2.4			
PU-/-OEG₅	21.3	±	2.5	300.9	±	23.4	389.0	±	21.3	54.4	±	2.5	25.4	±	0.4
PU-/-OEG₄	14.4	±	2.4	255.5	±	39.8	198.9	±	53.5	32.2	±	9.5	14.2	±	2.8
PU-/-OEG ₃	38.6	±	0.9	311.9	±	11.2	407.4	±	65.1	106.7	±	6.8	49.8	±	0.7
PU-/-PDO	38.2	±	6.3	4.8	±	1.0	902.0	±	122.2	1.2	±	0.4			

 Table S1. Summary of mechanical properties.

5. Rheology

	<i>M</i> n				η_0	G_N^0		
Sample		<i>M</i> _w/ <i>M</i> _n	C1	C2			n _{sc}	n _g
	(kg/mol)				(Pa s)	(MPa)		-
PUL-g-OEG	13.2	1 91	9	110	2 1×10 ⁷	0 77	5.5	9
10-9-0203	10.2	1.01			2.1.1.10	0.77	0.0	5
				400	0.0.407			
PU-g-OEG ₃	22.7	1.66	8	100	6.3×10 ⁷	0.88	5.5	9
PU-g-OEG ₃	58.1	2.04	9	120	1.4×10 ⁹	0.98	5.5	9
PU-g-OEG ₂	7.1	1.63	9	120	2.7×10 ⁶	0.76	4	9
PU-a-OEG ₂	22.8	2.16	8	120	4.2×10 ⁷	0.98	4	9
	_			_				-
	20 6	2 51	10	100	1 7~108	0.00	4	0
P0-g-0E02	20.0	2.31	10	100	1.7 ~ 10°	0.99	4	9
PU-g-OEG₁	18.2	4.71	9	120	1.2×10 ⁸	0.95	2.5	9
PU-/-OEG₅	6.9	1.54	7	120	1.1×10 ⁴	1.0	—	_
PU-/-OEG₅	12.3	1.97	9	90	1.0×10 ⁷	1.4	_	
BIL/OEG	26.8	1 57	<u> </u>	90	2 6×107	16		
F0-7-0EG5	20.0	1.57	9	50	2.0~10	1.0		
PU-/-OEG₄	17.7	1.88	8	90	8.3×10 ⁶	1.2	-	—
PU-/-OEG ₄	57.7	2.00	8	100	5.2×10 ⁷	1.4	—	_
PU-/-OEG₃	23.1	1.84	8	100	2.1×10 ⁶	0.95	_	
PU-/-PDO								

 Table S2. Summary of rheological properties.

Figure S11. Shift factors for PU derivatives ($T_{ref} = T_g + 50$ °C).

Figure S12. *G'* and *G''* curves for PU-*g*-OEG₃ with 80 °C (a), 90 °C (b), 100 °C (c), 110 °C (d), and 120 °C (e).

Figure S13. *G'* and *G''* curves for PU-*g*-OEG₂ with 90 °C (a), 100 °C (b), 110 °C (c), and 120 °C (d).

Figure S14. *G*' and *G*" curves for PU-*g*-OEG₁ with 130 °C (a), 140 °C (b), 150 °C (c), and 160 °C (d).

Figure S15. *G*' and *G*" curves for PU-*l*-OEG₅ with 60 °C (a), 70 °C (b), 80 °C (c), 90 °C (d), 100 °C (e), and 110 °C (f).

Figure S16. *G*' and *G*" curves for PU-*l*-OEG₄ with 70 °C (a), 80 °C (b), 90 °C (c), 110 °C (d), 120 °C (e), and 130 °C (f).

Figure S17. *G'* and *G''* curves for PU-*l*-OEG₃ with 100 °C (a), 110 °C (b), 120 °C (c), 130 °C (d), and 140 °C (e).

Figure S18. Arrhenius plots for PU-*g*-OEG₃(a), PU-*g*-OEG₂(b), PU-*g*-OEG₁(c), PU-*l*-OEG₅(d), PU-*l*-OEG₄(e), PU-*l*-OEG₃(f).

Figure S19. Van Gurp-Palmen curves for PU-*g*-OEG₃(a), PU-*g*-OEG₂(b), PU-*g*-OEG₁(c), PU-*l*-OEG₅(d), PU-*l*-OEG₄(e), PU-*l*-OEG₃(f).

Figure S20. Structural parameter for comb PUs.

Figure S21. Reduced complex viscosity versus reduced frequency for PU-*g*-OEG₃ (a), PU-*g*-OEG₂ (b), PU-*g*-OEG₁ (c), PU-*l*-OEG₅ (d), PU-*l*-OEG₄ (e), and PU-*l*-OEG₃ (f). Dashed fitting curves were calculated by Carreau-Yasuda model equation.²

6. Reference

Zheng, Z., Luo, M., Yu, J., Wang, J., & Ji, J. (2012). Novel process for 1, 3-dihydroxyacetone production from glycerol. 1. Technological feasibility study and process design. *Industrial & engineering chemistry research*, *51*(9), 3715-3721.

Yasuda, K. Y., Armstrong, R. C., & Cohen, R. E. (1981). Shear flow properties of concentrated solutions of linear and star branched polystyrenes. *Rheologica Acta*, *20*(2), 163-178.