SUPPORTING INFORMATION

Controlled Ring-Opening Polymerization of *N*-(3-*tert*-Butoxy-3-oxopropyl) Glycine Derived *N*-Carboxyanhydrides towards Well-defined Peptoid-based Polyacids

Bailee N. Barrett,[†] Garrett L. Sternhagen[†] and Donghui Zhang*

Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States

*Corresponding to: <u>dhzhang@lsu.edu</u>

[†] These authors contributed equally to the work

Figure S1. ¹H (top) and ¹³C{¹H} NMR spectra (bottom) of 2-((3-*tert*-butoxy-3-oxopropyl)amino) acetic acid (**1**, Scheme 1) in CDCl₃.

Figure S2. ¹H (top) and ¹³C{¹H} NMR spectra (bottom) of 2-(N-(*tert*-butoxycarbonyl)-N-(3-*tert*-butoxy-3-oxopropyl) amino) acetic acid (**3**, Scheme 1) in CDCl₃.

Figure S3. ¹H (top) and ¹³C{¹H} NMR spectra (bottom) of *N*-(3-*tert*-butoxy-3-oxopropyl) glycine derived *N*-carboxyanhydride (^tBuO₂Pr-NCA, Scheme 1) in CDCl₃.

Figure S4. ¹H (top) and ¹³C{¹H} NMR spectra (bottom) of poly(N-(3-tert-butoxy-3-oxopropyl) glycine) polymer in DMSO-d₆.

Figure S5. ¹H (top) and ¹³C{¹H} NMR spectra (bottom) of poly(N-2-(carboxyethyl) glycine) polymer in DMSO-d₆.

Figure S6. Plots of the SEC-DRI chromatograms for the butylamine-initiated ROPs of ${}^{t}BuO_{2}Pr$ -NCA in toluene at room temperature with different initial monomer-to-initiator ratios ([M]₀:[I]₀=25:1 – 200:1, Entry 6-9, Table 1).

Figure S7. A representative SEC-MALS-DRI chromatogram of poly(N-(3-tert-butoxy-3-oxopropyl) glycine) polymers obtained from the butylamine-initiated ROPs of ^tBuO₂Pr-NCA ($[M]_0 = 0.5 \text{ M}, [M]_0:[I]_0 = 100:1$, in toluene, r.t.), showing the DRI (blue curve) and RALS response (black curve).

Figure S8. ESI-MS spectrum of oligomers obtained by benzylamine-initiated ROP of $EtO_2Et-NCA$ in toluene at room temperature and the structural assignment of the molecular ions and corresponding calculated m/z values. Competitive termination by transamidation relative to chain propagation resulted in the formation of only low molecular weight oligomeric species shown here.

Figure S9. ¹H NMR spectra of poly(N-(3-tert-butoxy-3-oxopropyl) glycine) polymer precursor (top) and resulting poly(N-(2-carboxyethyl) glycine) (bottom) obtained after TFA treatment, in DMSO-d₆.

Figure S10. DLS correlograms (black curve) and intensity-weighted decay time distribution of poly(N-(2-carboxyethyl) glycine) (blue curve) in aqueous solution at two different pH (= 2.35 (A) and 11.8 (B)). DLS correlograms were fitted by MEM method (red curve) to determine the R_h values.