Supporting Information

Thermoresponsive dynamic BAB block copolymer networks synthesized by aqueous PISA in one-pot

Pauline Biais^a, Marie Engel^a, Olivier Colombani^b, Taco Nicolai^b, François Stoffelbach^a, Jutta Rieger^{a,*}

^a Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, Polymer

Chemistry Team, 4 Place Jussieu, 75252 Paris Cedex 05, France

E-mail: jutta.rieger@sorbonne-universite.fr

^b Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283 CNRS Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

Figure S1. Acid titration curve to determine the pK_a of a (C₄-TTC-PDMAc)₂-BA macroRAFT agent ($M_{n,NMR} = 8.8$ kg mol⁻¹). Titration at C = 1 mmol L⁻¹ with a NaOH solution (C = 10 mmol L⁻¹).

Entry	[DMAc]0/[RAFT]0	time (min)	conv. ^b (%)	τ ^c (%)	DP _{n,th} ^d	$M_{n,th}{}^d$ (kg mol ⁻¹)	M _{n,NMR} ^e (kg mol ⁻¹)	M _{n,PMMA} ^f (kg mol ⁻¹)	${\cal D}^f$
Ι	88	79	90	19	79	8.4	8.2	5.6	1.14
I bis*	115	129	73	-	84	8.9	9.2	5.4	1.21
II	197	136	93	19	182	18.7	18.5	11.0	1.46
II bis	197	105	90	19	177	18.1	18.4	11.1	1.23
III	436	115	90	18	394	39.6	$N.D.^{g}$	34.2	1.15
I tris**	110	75	88	20	97	10.2	9.8	6.5	1.15

Table S1. Polymerization conditions and characteristics of the poly(N,N-dimethylacrylamide) macroRAFT agents prepared by polymerization of DMAc at 70 °C and natural pH.^{*a*}

^{*a*} The polymerizations were started in bulk conditions ([DMAc]₀ = 9.7 mol L⁻¹) and at about 50% monomer conversion water was added to dilute the reaction medium by a factor of five. [RAFT agent]₀/[ACPA]₀ = 10. ^{*b*} Monomer conversion determined by ¹H NMR. ^{*c*} Final solids content, $\tau_{polym} = m_{polymer}/m_{tot} = [m(DMAc)_0 \times \text{conv.} + m(RAFT)_0]/m_{tot.}$ ^{*d*} Theoretical number-average molar mass, $M_{n,th}$, and number-average degree of polymerization, $DP_{n,th}$, calculated using the experimental conversion. ^{*e*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, determined by ¹H NMR. ^{*f*} Number-average molar mass $M_{n,NMR}$, could not be determined by ¹H NMR. * Sample I *bis* was prepared in DMF according to the protocol described in our previous work. ¹ ** *I tris* has a slightly higher DP_n than I and I *bis*. It was only used for preliminary tests, see **Table S2** and **Figure S3**.

Figure S2. SEC chromatograms in DMF of the PDMAc macroRAFT agents (see Table S1).

Table S2. Experimental conditions and results for aqueous dispersion copolymerizations of DAAm and DMAc in the presence of PDMAc macroRAFT agent I *tris* synthesized in water in the first polymerization step (Table S1).^{*a*}

Entry	α ^b (%)	mol% DMAc ^c	time (min)	DMAc conv. (%) ^d	DAAm conv. (%) ^d	<i>DP</i> _{n,th} ^e (2 nd block)	M _{n,th} ^e (kg mol ⁻¹)	M _{n,PMMA} ^f (kg mol ⁻¹)	${oldsymbol{ar{D}}}^f$	Stability
Α	47	6.4	120	93	95	188	40.8	41.3	1.59 (bi-modal)	Preci- pitate
В	85	6.4	120	93	97	192	41.4	43.2	1.23	Stable

^{*a*} Polymerizations conditions: T = 70 °C, $[monomers]_0 = 11$ wt%, $[monomers]_0/[macroRAFT]_0 = 198$, $M_{n,NMR}$ (PDMAc I *tris*) = 9.8 kg mol⁻¹, $[PDMAc]_0 = 37$ g L⁻¹ = 3.8 mmol L⁻¹, $[ACPA added in 2^{nd} polymerization step]_0 = 0.77$ mmol L⁻¹. ^{*b*} Ionization degree of the central benzoic acid moiety of the PDMAc macroRAFT agent. ^{*c*} Molar percentage of DMAc in the second polymer block. mol% DMAc = $[n(DMAc_{residual}) + n(DMAc_{added})] / [n(DAAm) + n(DMAc_{residual}) + n(DMAc_{added})] \times 100$. ^{*d*} Monomer conversion determined by ¹H NMR. ^{*e*} Theoretical number-average degree of polymerization, $DP_{n,th}$, and number-average molar mass, $M_{n,th}$, calculated using the experimental conversion and using $M_{n,NMR}$ for the PDMAc block. ^f Number-average molar mass $M_{n,PMMA}$ and dispersity, D, determined by SEC in DMF (+ LiBr 1g L⁻¹) with a PMMA calibration, see **Figure S3**.

Figure S3. Normalized size exclusion chromatograms of PDMAc macroRAFT agent (entry I *tris* in **Table S1**) and the resulting [C₄-P(DAAm-*co*-DMAc)-*b*-PDMAc]₂-BA copolymers A and B (**Table S2**) obtained by RAFT polymerization dispersion in water respectively at $\alpha = 47$ and 85%.

Figure S4. Monitoring of the individual conversion of DAAm and DMAc by ¹H NMR during the chain-extension of PDMAc macroRAFT agent with DAAm and DMAc (33 mol% of DMAc), for experimental conditions see entry 80-100-33 in **Table 1**.

Entry	PDMAc Macro RAFT (ref Table S1)	M _{n,NMR} ^b Macro RAFT (kg mol ⁻¹)	[macroRAFT]0 (mmol L ⁻¹)	[M _{tot}]0/ [macroRAFT]0	mol% DMAc ^c	time (min)	DMAc conv. (%) ^d	DAAm conv. (%) ^d	total DP _n , ^e (B blocks)	M _{n,th} ^e (kg mol ⁻¹)	M _{n,PMMA} ^f (kg mol ⁻¹)	$oldsymbol{D}^{f}$
				Series	$I - DP_{n,A}$	block ~ 80)					
80-100-0	* I bis	9.2	7.8	89	0	187	-	97	86	23.8	17.5	1.23
80-100-2	20 I	8.2	8.7	109	20	120	100	100	108	24.8	20.3	1.19
80-100-3	33 I	8.2	8.9	110	33	120	99	98	111	24.1	20.9	1.18
80-100-5	50 I	8.2	9.0	112	50	124	98	99	111	23.1	19.2	1.21
80-400-4	2 I	8.2	2.8	391	42	134	98	100	391	63.2	54.3	1.23
				Series I	$I - DP_{n,A}$	block ~ 18	80					
180-100-	20 II	18.5	9.4	96	20	120	85	88	96	33.4	29.3	1.22
180-100-	33 II bis	18.4	10.1	98	33	120	88	90	98	32.8	25.0	1.21
180-100-	50 II bis	18.4	11.2	106	50	120	94	96	105	32.5	25.0	1.20
180-400-	20 II bis	18.4	2.4	390	20	137	100	100	390	78.9	70.5	1.28
180-400-	42 II	18.5	2.6	391	42	120	98	99	391	73.0	62.3	1.21
Series III – $DP_{n, A \ block} \sim 400$												
400-100-	50 III	39.6 ^{<i>g</i>}	4.1	112	50	137	100	100	111	54.9	46.6	1.17
400-400-	42 III	39.6 ^{<i>g</i>}	1.8	388	42	137	100	100	388	94.2	74.8	1.26

Table S3. Aqueous dispersion copolymerizations of DAAm and DMAc at $\alpha = 85\%$ in the presence of PDMAc macroRAFT.^{*a*}

^{*a*} Polymerization conditions: T = 70 °C, [monomers]₀ = 12 wt%, α (BA) = 85% (corresponding to pH = 5), [ACPA added in the 2nd polymerization step]₀ = 0.76 mmol L⁻¹. ^{*b*} Number-average molar mass $M_{n,NMR}$ of PDMAc macroRAFT, determined by ¹H NMR. ^{*c*} Molar percentage of DMAc in the two B blocks. mol%DMAc = [n(DMAc_{residual}) + n(DMAc_{added})] / [n(DAAm) + n(DMAc_{residual}) + n(DMAc_{added})] × 100. ^{*d*} Monomer conversion determined by ¹H NMR. ^{*e*} Total theoretical number-average degree of polymerization, $DP_{n, B \text{ blocks}}$, and number-average molar mass, $M_{n,th}$, calculated using the experimental conversion and using $M_{n,NMR}$ for the PDMAc block. ^{*f*} Number-average molar mass $M_{n,pMMA}$ and dispersity, D, determined by SEC in DMF (+ LiBr 1g L⁻¹) with a PMMA calibration. ^{*g*} Theoretical number-average molar mass $M_{n,th}$ calculated using the experimental conversion. * Not an all-water polymerization process (1st step in DMF).¹² BAB triblock copolymers are noted "X-Y-Z", where "X" stands for the $DP_{n, A \text{ block}}$ of PDMAc macroRAFT used, "Y" indicates the overall $DP_{n, B \text{ blocks}}$ and "Z", the mol% of DMAc in the hydrophobic block.

Figure S5. Normalized size exclusion chromatograms of PDMAc macroRAFT agents and the resulting $[C_4-P(DAAm-co-DMAc)-b-PDMAc]_2$ -BA copolymers obtained by RAFT dispersion polymerization in water of series I (with macroRAFT of $DP_{n, A \text{ block}} \sim 80$), series II (with macroRAFT of $DP_{n, A \text{ block}} \sim 400$). See experimental conditions in **Table 1** and details in **Table S3**.

Sample	DPn, PDMAc	mol% DMAc ^a	η (Pa.s)
180-100-20	177	20	0.309
180-100-33	177	33	0.054
80-100-33	79	33	\leq 0.015 ^b

Table S4. Viscosity η in the Newtonian regime of triblock copolymers at 5 wt% in water and 30 °C.

^{*a*} Molar percentage of DMAc in the two B blocks; ^{*b*} The oil added on the geometry to limit water evaporation from the sample (see experimental section) causes an error on the measurement of very-low viscosity aqueous solutions. Indeed, the viscosity of water covered with this oil is also 0.015 Pa.s instead of 0.0008 Pa.s.³⁸ It follows that the viscosity of 80-100-33 at 5 wt% lies between 0.0008 and 0.015 Pa.s but cannot be measured more precisely. This information is sufficient to conclude though.

Figure S6. TEM images and number-average diameter (d_n) of (**A**) sample 80-100-33 stained with phosphotungstic acid (0.05 wt%), and (**B**) sample 80-100-0. The samples were prepared at 25°C and 0.1wt%. Cryo-TEM image (**C**) for sample 180-100-33 (prepared at 25 °C and 1 wt%).

Figure S7. Macroscopic aspect of triblock copolymers with total $DP_{n, B \text{ blocks}} \sim 400$ at 18 wt% in water at 25 °C observed 5s after vial tilting. The dotted circle indicates a gel-like dispersion.

Figure S8. Macroscopic aspect at different temperatures for block copolymer dispersions 180-100-33 and 180-400-42 at C ~ 18 wt% (see **Table 1**) observed 5s after vial tilting. Sample 180-100-33: $DP_{n, A block} \sim 180$, $DP_{n, B blocks} \sim 100$ with 33 mol% DMAc and sample 180-400-42: $DP_{n, A block} \sim 180$, $DP_{n, B blocks} \sim 400$ with 42 mol% DMAc.

Figure S9. Temperature-dependency of the viscosity (η) in the Newtonian regime at C = 5 wt% for sample 180-100-20 (\triangle). The solid lines are guides to the eye.

Figure S10. Frequency dependence of the storage and loss moduli for a 14 wt% dispersion of copolymer 180-100-33 at an applied strain of 1% and at different temperatures: 27 °C (G' \triangle and G'' \blacktriangle), 50 °C (G' \bigcirc and G'' \bigcirc) and 70 °C (G' \square and G'' \blacksquare). The solid lines are guides to the eye.

Figure S11. Cryo-TEM images prepared at 25, 40 and 70 °C of sample 180-100-33 (1 wt%).

Table S5. Number-average	diameter, d_n ,	determined l	by cryo-TEM	for sample	180-100-33 a	.t 1
wt%.						

Sample	Temp. (°C) ^a	$d_{\mathrm{n}}\left(\mathrm{nm} ight)^{\mathrm{b}}$	σ ^c
	25°C	22	5.2
180-100-33	40°C	21	3.5
	70°C	27	7.3

^a Temperature at which the sample was deposited on the TEM grid; ^b number-average diameter determined on more than 25 particles; ^c standard deviation

Figure S12. (A) Variable temperature ¹H NMR study of a thermoresponsive BAB triblock copolymer (sample 180-100-33 in **Table 1**) in D₂O at 2.5 wt% upon heating from 5 °C to 80 °C. The signal intensity of protons *i,d* reaches a minimum at ~ 35 °C which could be attributed to the minimum of mobility of the core-forming blocks B. (B) The relative integral of signal *i,d* is calculated according (*Equation 1*).

References

¹ P. Biais, P. Beaunier, F. Stoffelbach and J. Rieger, *Polymer Chemistry*, 2018, **9**, 4483–4491.