Supplementary Information

Towards Nanoparticles with Site-Specific Degradability by Ring-Opening Copolymerization Induced Self-Assembly in Organic Medium

Chen Zhu,[†] Julien Nicolas^{*}

¹ Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry,

France

*To whom correspondence should be addressed.

Email: julien.nicolas@u-psud.fr

Tel.: +33 1 46 83 58 53

Macro-CTA	RAFT agent	LMA Conv. ^a (%)	M _{n,SEC} ^b (g.mol ⁻¹)	$DP_{n,SEC}^{c}$	${\cal D}^{b}$	M _{n,NMR} ^d (g.mol ⁻¹)	$DP_{n,NMR}^{e}$
PLMA ₁₈	CDSPA	49	5 000	18	1.13	4 700	17
	CDB	48	4 900	18	1.19	4 100	15

Table S1. Macromolecular Characteristics of PLMA Macro-CTAs Synthesized by RAFTPolymerization in Anhydrous Toluene at 70 °C for 4 h.

^{*a*} Determined by ¹H NMR. ^{*b*} Determined by SEC after precipitation. ^{*c*} Calculated according to: $DP_{n,SEC} = (M_{n,SEC} - MW_{RAFT agent}) / MW_{LMA}$. ^{*d*} Determined by ¹H NMR by integrating the signal from the RAFT agent (2H in the α -position to the carboxylic acid of CDSPA at 3.3 ppm and 10H of the aromatic groups of CDB at 7.1-8.1 ppm) and the 2H of PLMA (3.8-4.0 ppm). ^{*e*} Determined by ¹H NMR according to: $DP_{n,NMR} = (M_{n,NMR} - MW_{RAFT agent}) / MW_{LMA}$.

Table S2. Macromolecular and Colloidal Properties of PLMA18-*b*-P(BzMA150-*co*-MDO) (L18-**Bz**150**M**) Diblock Copolymer Nanoparticles.

Targeted copolymer	f _{мdo,0}	Conv. ^a (%) / Time (h)	$F_{ m MDO}{}^b$	Opened MDO ^c (%)	M _{n,NMR} ^d (g.mol ⁻ ¹)		Ð	D _i f (nm)	PSD ^f
	0.2	78/20	0.04	75	131 500	36 800	1.9	102	0.18
L ₁₈ -Bz ₁₅₀ M	0.4	66/20	0.10	66	37 300	45 600	4.3	140	0.34
	0.7	52/20	0.19	75	19 200	46 000	2.5	202	0.26

^{*a*} BzMA conversion determined by ¹H NMR. ^{*b*} Determined by ¹H NMR after precipitation. ^{*c*} Determined by integrating the 2H of opened MDO (3.9–4.0 ppm) and the 4H of closed MDO (3.3–3.6 ppm). ^{*d*} Determined by ¹H NMR by integrating the 2H of MDO (2.5–2.9 ppm) and the 2H of BzMA (4.9–5.1 ppm). ^{*e*} Determined by SEC after precipitation. ^{*f*} Determined by DLS.

Targeted copolymer	Time (h)	Conv. ^a (%)	<i>M</i> _n ^b (g.mol ⁻¹)	$oldsymbol{B}^b$	Dz ^c (nm)	PSD ^c
	5	61	16 200	1.13	232	0.23
L ₁₈ -Bz ₁₅₀	6	66	17 700	1.13	203	0.13
$f_{\rm CKA,0} = 0$	8	70	18 000	1.14	191	0.11
_	20	71	18 400	1.12	179	0.11
	5	39	15 800	1.34	36	0.004
L ₁₈ -Bz ₁₅₀ MP	6	46	17 000	1.35	38	0.04
$f_{\rm MPDL,0} = 0.2$	8	53	17 200	1.38	41	0.01
_	20	76	34 200	1.23	52	0.02
	5	12	7 000	1.40	43	0.04
L_{18} -Bz ₁₅₀ M	6	14	7 200	1.41	47	0.04
$f_{\rm MDO,0} = 0.2$	8	16	7 200	1.43	49	0.07
_	20	23	7 500	1.69	149	0.18

Table S3. Macromolecular and Colloidal Characteristics of L_{18} - Bz_{150} , L_{18} - Bz_{150} MP ($f_{MPDL} = 0.2$) and L_{18} - Bz_{150} M ($f_{MDO} = 0.2$) Nanoparticles as Function of the Reaction Time.

^a BzMA conversion determined by ¹H NMR. ^b Determined by SEC. ^c Determined by DLS.

Copolymer ^a	<i>f</i> ска,0	F _{CKA} ^b	Opened CKA ^c (%)	Conv. ^d (%)/Time (h)	M _{n,NMR} ^e (g.mol ⁻¹)	M _{n,SEC} ^f (g.mol ⁻¹)	Ðſ
P(LMA ₁₃ - <i>co</i> -BMDO _{0.7})	0.4	0.05	66	39/4	3600	3 600	1.23
P(LMA ₁₇ - <i>co</i> -MPDL _{0.53})	0.4	0.03	n.d.	43/4	5700	4 700	1.22

Table S4. Macromolecular Characteristics of P(LMA-*co*-CKA) Macro-CTAs Synthesized byRAFT Polymerization in Anhydrous Toluene at 70 °C for 4 h.

^{*a*} Determined from $M_{n,SEC}$ and F_{MPDL} or F_{BMDO} . ^{*b*} Determined by ¹H NMR after precipitation. ^{*c*} Determined by integrating the 2H of opened BMDO (5.0–5.2 ppm) and the 4H of closed BMDO (4.6–4.8 ppm). ^{*d*} LMA conversion determined by ¹H NMR. ^{*e*} Calculated by ¹H NMR by integrating the 2H of the RAFT agent (7.9-8.0 ppm), the 2H of BMDO (2.2–2.4 ppm) or the 2H of MPDL (2.3–2.7 ppm) and the 2H of LMA (3.8–4.0 ppm). ^{*f*} Determined by SEC after precipitation.

Table S5. Macromolecular and Colloidal Properties of P(LMA₁₇-co-MPDL_{0.53})-b-PBzMA₁₅₀(L₁₇MP_{0.53}-Bz₁₅₀) Diblock Copolymer Nanoparticles.

Targeted	Conv. ^a (%) /	$M_{\mathrm{n,NMR}}^{b}$	$M_{n,SEC}^{c}$	\mathcal{D}^{c}	D_z^{d}	PSD ^d
copolymer	Time (h)	(g.mol ⁻¹)	(g.mol ⁻¹)	D	(nm)	I SD [*]
L ₁₇ MP _{0.53} -Bz ₁₅₀	73/20	98 600	61 700	1.27	126	0.29

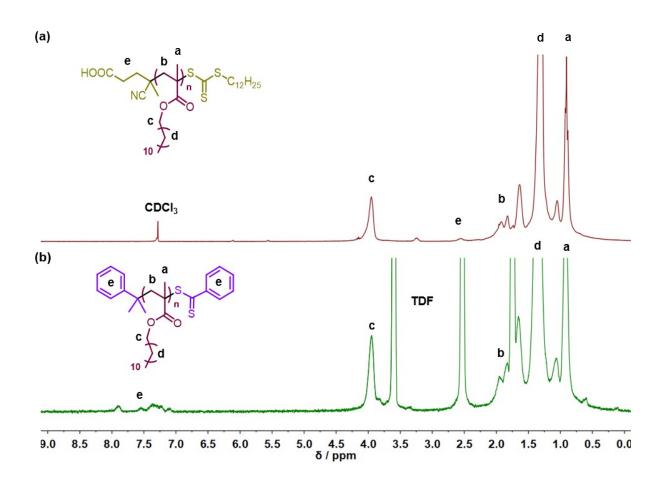
^{*a*} BzMA conversion determined by ¹H NMR. ^{*b*} Determined by ¹H NMR by integrating the 2H of BzMA (4.9-5.1 ppm). ^{*c*} Determined by SEC after precipitation. ^{*d*} Determined by DLS.

Table S6. Degradation Under Accelerated Conditions of P(LMA-co-BMDO) Macro-CTAs^a

Average consecutive $F_{\rm BMDO}^{b}$ LMA units ^c		Exp. M_n after degradation $(M_{n,exp})^d$	Theo. $M_{\rm n}$ after degradation $(M_{\rm n,th}^{\infty})^e$	M _n decrease ^f
		(g.mol ⁻¹)	(g.mol ⁻¹)	(%)
0.05	19.0	4 350	5 000	-0
0.08	11.5	5 700	3 100	-0
0.09	10.1	2 800	2 700	-26
0.10	9.0	2 200	2 500	-48
0.14	6.1	1 200	1 700	-71
0.24	3.2	600	1 000	-83

^{*a*} Degradation was performed for 1 h at room temperature in THF with 5% KOH in methanol. ^{*b*} Determined by ¹H NMR after precipitation. ^{*c*} Calculated according to: $1/F_{BMDO}$ - 1. ^{*d*} Determined by SEC (CHCl₃ with 0.1% v/v TFA). ^{*e*} Calculated according to: $MW_{LMA} \times (1 / F_{BMDO} - 1) + MW_{BMDO}$. ^{*f*} M_n decrease after hydrolytic degradation of the purified copolymers calculated according to: (exp. $M_{n,SEC}$ – initial $M_{n,SEC}$) / initial $M_{n,SEC}$.

Table S7. Macromolecular Characteristics of P(LMA-*co*-CKA) Macro-CTA Synthesized byRAFT Polymerization in Anhydrous Toluene at 90 °C for 4 h


Macro-CTA ^a	<i>f</i> ска,0	F _{CKA} ^b	Opened CKA ^c (%)	Conv. ^d (%) / Time (h)	M _{n,NMR} ^e (g.mol ⁻¹)	M _{n,SEC} ^f (g.mol ⁻¹)	Ðſ	M _n decrease ^g (%)
P(LMA ₂₈ -co-	0.20	0.07	n.d.	78/4	8500	7 600	1.24	-38
MPDL _{2.1})								
P(LMA ₂₀ - <i>co</i> - BMDO _{2.2})	0.40	0.10	87	64/4	7800	5 700	1.38	-40

^{*a*} Determined from $M_{n,SEC}$ and F_{MPDL} or F_{BMDO} . ^{*b*} Determined by ¹H NMR after precipitation. ^{*c*} Determined by integrating the 2H of opened BMDO (5.0–5.2 ppm) and the 4H of closed BMDO (4.6–4.8 ppm). ^{*d*} LMA conversion determined by ¹H NMR. ^{*e*} Calculated by ¹H NMR by integrating the 2H of the RAFT agent (7.9-8.0 ppm), the 2H of BMDO (2.2–2.4 ppm) or the 2H of MPDL (2.3–2.7 ppm) and the 2H of LMA (3.8–4.0 ppm). ^{*f*} Determined by SEC after precipitation. ^{*g*} Determined according to: (exp. $M_{n,SEC}$ – initial $M_{n,SEC}$) / initial $M_{n,SEC}$.

Table S8. Macromolecular and Colloidal Properties of P(LMA-*co*-CKA)-*b*-P(BzMA-*co*-CKA)Diblock Copolymer Nanoparticles.

Macro-CTA	Core CKA	<i>f</i> ска,0	$F_{ m CKA}{}^a$	Conv. ^b (%) / Time (h)	M _{n,NMR} ^c (g.mol ⁻¹)	M _{n,SEC} ^d (g.mol ⁻¹)	${oldsymbol{ ilde D}}^d$	Dz ^e (nm)	PSD ^e
P(LMA ₂₀ - <i>co</i> - BMDO _{2.2})	-	0	-	79/16	119 300	76 900	1.57	166	0.25
P(LMA ₂₀ - <i>co</i> - BMDO _{2.2})	BMDO	0.40	0.12	52/16	18 600	13 200	1.60	61	0.01
P(LMA ₂₈ -co- MPDL _{2.1})	-	0	-	58/16	87 900	36 200	1.13	96	0.10
P(LMA ₂₈ - <i>co</i> - MPDL _{2.1})	MPDL	0.40	0.15	50/16	23 900	18 000	1.35	115	0.22

^{*a*} Determined by ¹H NMR after precipitation. ^{*b*} LMA conversion determined by ¹H NMR. ^{*c*} Determined by ¹H NMR by integrating the 2H of BMDO (2.2–2.4 ppm) or 2H of MPDL (2.3-2.7 ppm) and the 2H of BzMA (4.9-5.1 ppm). ^{*d*} Determined by SEC after precipitation. ^{*e*} Determined by DLS.

Figure S1. ¹H NMR spectra in the 0–9 ppm region of: (a) PLMA₁₈-CDSPA in CDCl₃ and (b) PLMA₁₈-CDB in tetrahydrofuran- d_8 , TDF.

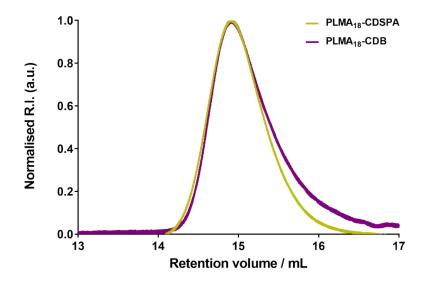
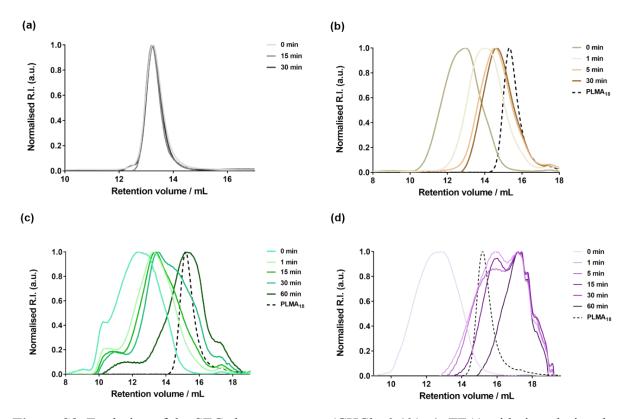



Figure S2. SEC chromatograms (CHCl₃) of PLMA₁₈-CDSPA and PLMA₁₈-CDB.

Figure S3. Evolution of the SEC chromatograms (CHCl₃, 0.1% v/v TFA) with time during the degradation under accelerated conditions (THF/MeOH, KOH 2.5%) of L₁₈Bz₁₅₀M copolymers

as function of the MDO content: (a) $F_{MDO} = 0$; (b) $F_{MDO} = 0.04$; (c) $F_{MDO} = 0.10$ and (d) $F_{MDO} = 0.19$.

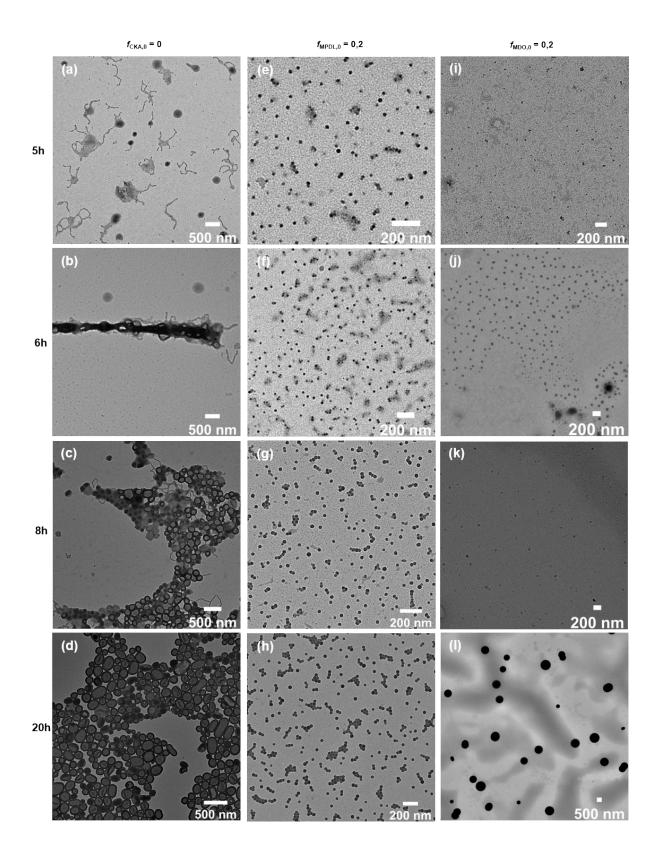
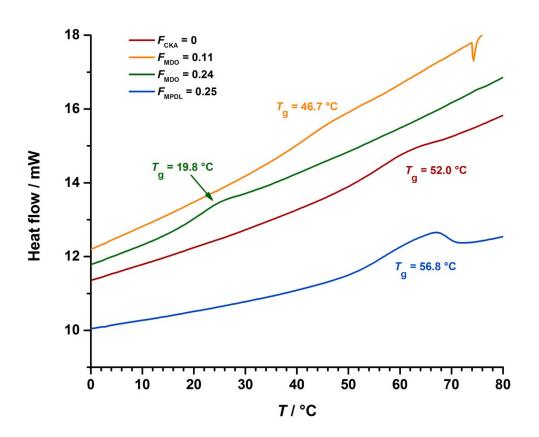
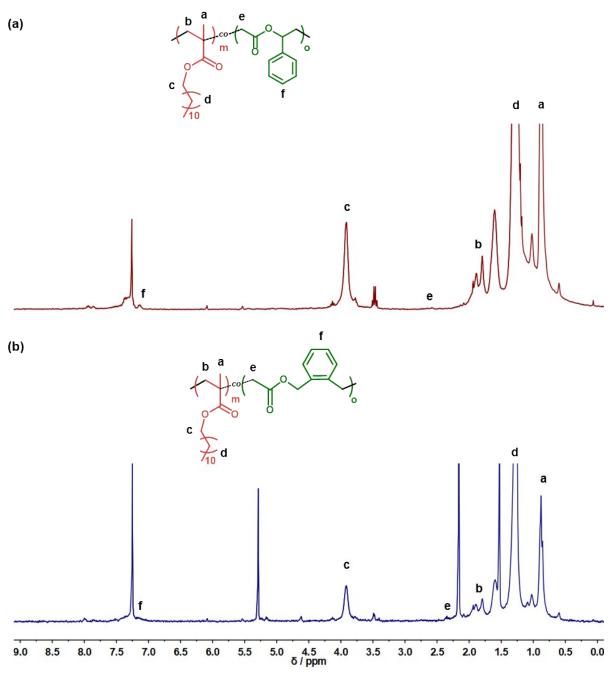
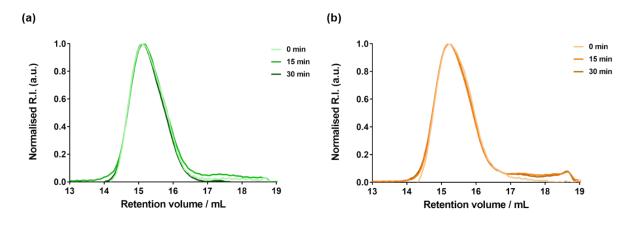


Figure S4. Representative TEM images of L_{18} -Bz₁₅₀, L_{18} -Bz₁₅₀MP ($f_{MPDL} = 0.2$) and L_{18} -Bz₁₅₀M ($f_{MDO} = 0.2$) nanoparticles with the reaction time.

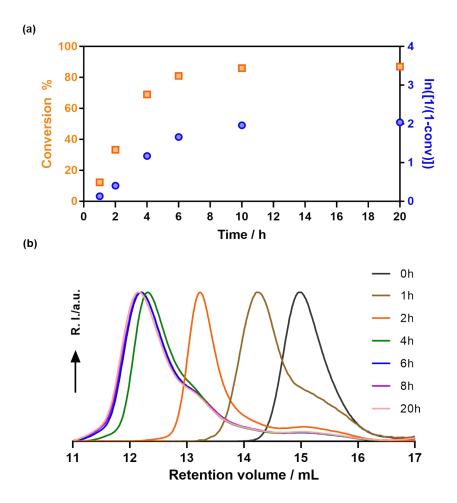

Figure S5. DSC measurements performed on L_{18} -Bz₁₅₀ ($F_{CKA} = 0$), L_{18} -Bz₁₅₀MP ($F_{MPDL} = 0.25$), L_{18} -Bz₁₅₀M ($F_{MDO} = 0.19$ and $F_{MDO} = 0.10$).

Figure S6. ¹H NMR spectra in CDCl₃ in the 0–9.0 ppm region of: (a) P(LMA₁₇-*co*-MPDL_{0.53}) and (b) P(LMA₁₃-*co*-BMDO_{0.7}) macro-CTAs.

Figure S7. Evolution of the SEC chromatograms (CHCl₃) at different time during the degradation under accelerated conditions (THF/MeOH, KOH 2.5%) of: (a) $P(LMA_{17}-co-MPDL_{0.53})$ and (b) $P(LMA_{13}-co-BMDO_{0.7})$.

Figure S8. Synthesis of $L_{17}MP_{0.53}$ -**Bz**₁₅₀ diblock copolymers by rROPISA in heptane at 90°C: (a) Evolution of BzMA conversion and logarithmic conversion vs. time plots and (b) evolution of the SEC chromatograms (CHCl₃) with time using normalised RI values.

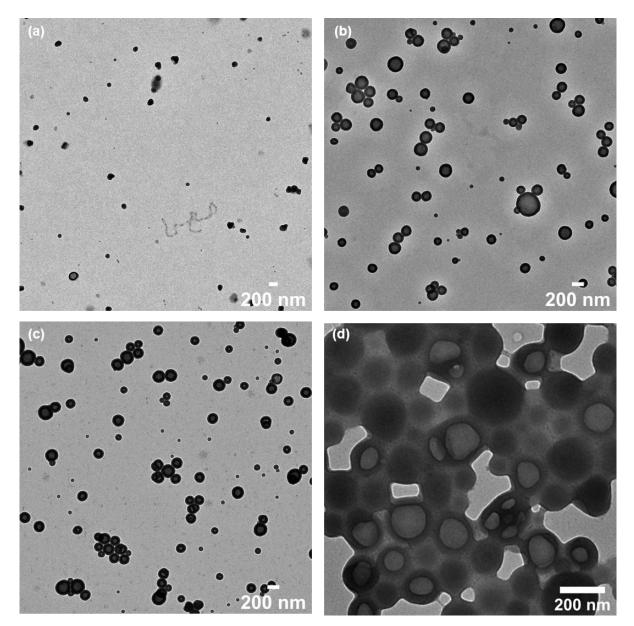
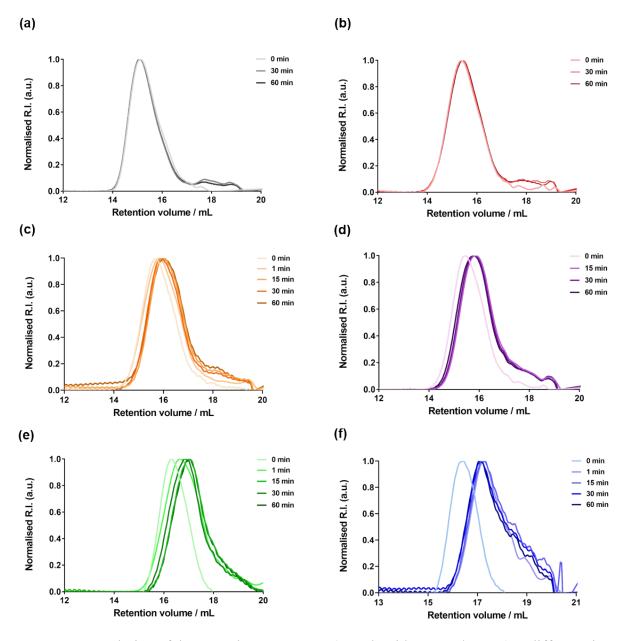
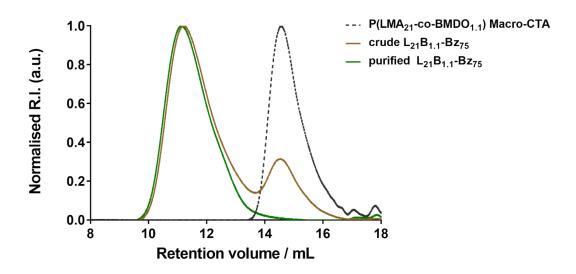
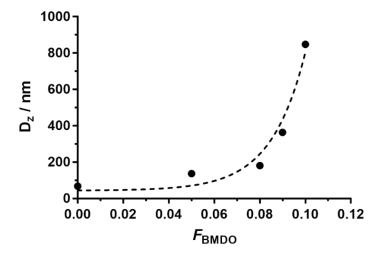
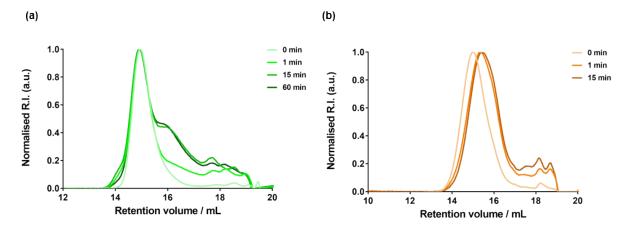



Figure S9. Representative TEM images of $L_{17}MP_{0.53}$ -B z_{150} nanoparticles at different time points: (a) 2h; (b) 4h; (c) 8h and (d) 20h.

Figure S10. Evolution of the SEC chromatograms (CHCl₃ with 0.1% v/v TFA) at different time during the degradation under accelerated conditions (THF/MeOH, KOH 2.5%) of P(LMA-*co*-BMDO) macro-initiator (a) $F_{BMDO} = 0.05$, (b) $F_{BMDO} = 0.08$, (c) $F_{BMDO} = 0.09$, (d) $F_{BMDO} = 0.10$, (e) $F_{BMDO} = 0.14$, (b) $F_{BMDO} = 0.24$.

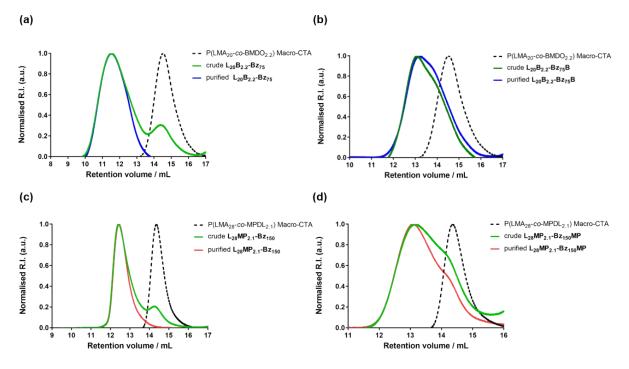

Figure S11. SEC chromatograms (CHCl₃) of $P(LMA_{21}-co-BMDO_{1.1})$ macro-CTA and of $L_{21}B_{1.1}-Bz_{75}$ copolymers before and after purification.

Figure S12. Evolution of the intensity-average diameter (D_z) of P(LMA-*co*-BMDO)-*b*-PBzMA₇₅ nanoparticles with F_{BMDO} .

Figure S13. Evolution of the SEC chromatograms (CHCl₃) at different time during the degradation under accelerated conditions (THF/MeOH, KOH 2.5%) of: (a) $P(LMA_{20}-co-BMDO_{2,2})$ and (b) $P(LMA_{28}-co-MPDL_{2,1})$.

Figure S14. Evolution of the SEC chromatograms (CHCl₃) obtained after chain extension by rROPISA from: (a) $P(LMA_{20}-co-BMDO_{2.2})$ with BzMA; (b) $P(LMA_{20}-co-BMDO_{2.2})$ with BzMA and BMDO ($f_{BMDO} = 0.4$); (c) $P(LMA_{28}-co-MPDL_{2.1})$ and (d) $P(LMA_{28}-co-MPDL_{2.1})$ and MPDL ($f_{MPDL} = 0.4$).

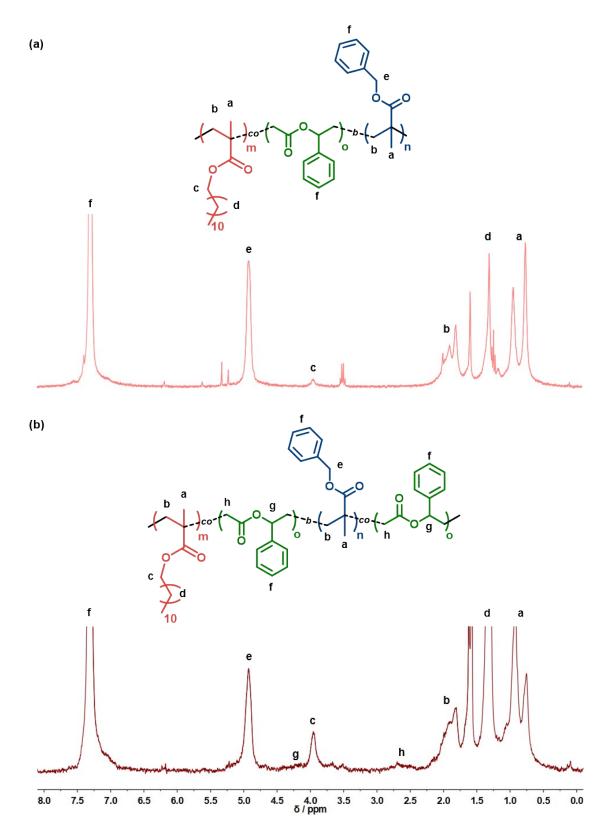


Figure S15. ¹H NMR spectra in CDCl₃ in the 0–8 ppm region of: (a) $L_{28}MP_{2.1}$ -Bz₁₅₀ and (b) $L_{28}MP_{2.1}$ -Bz₁₅₀MP copolymers. Note that protons belonging to MPDL are no longer visible for $L_{28}MP_{2.1}$ -Bz₁₅₀.

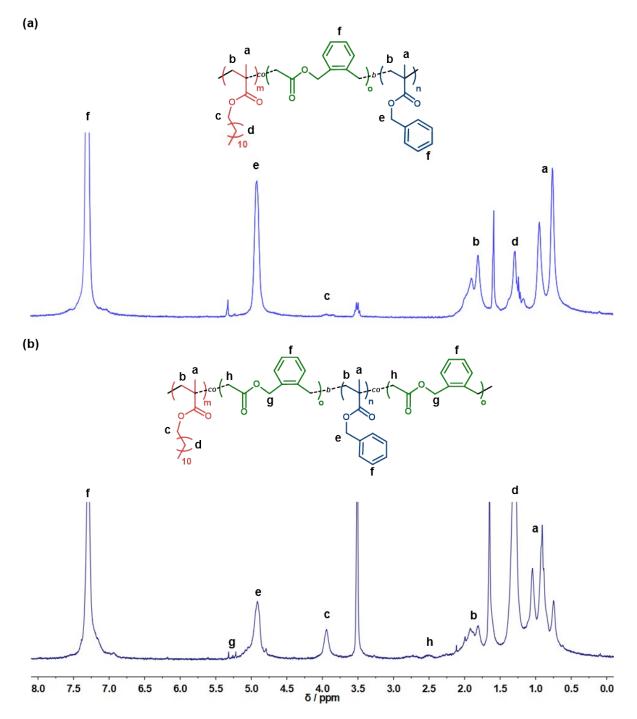


Figure S16. ¹H NMR spectra in CDCl₃ in the 0–8 ppm region of: (a) $L_{20}B_{2.2}$ -Bz₇₅ and (b) $L_{20}B_{2.2}$ -Bz₇₅B copolymers. Note that protons belonging to BMDO are no longer visible for $L_{20}B_{2.2}$ -Bz₇₅.