Electronic Supplementary Information to:

Enhancing the Activity of Peroxidase Mimicking of Hemin by Covalent Immobilization in Polymer Nanogels

Jieyu Guo^a, Yuting Liu^a, Junqi Zha^a, Honghua Han^a, Yantao Chen^a*, and Zhongfan Jia^b*

^a Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China

^b Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia

To whom all correspondence should be addressed.

E-mail: ytchen@szu.edu.cn or zhongfan.jia@flinders.edu.au

Figure S1. DLS measurement of the size of Hem@Gel, Hem/Gel and Hem with an intensity

distribution

Figure S2. The corresponding elemental mapping pattern of the dried Hem@Gel.

Figure S3. The corresponding elemental mapping pattern of the dried Hem/Gel, the white circle indicates gel particles.

Figure S4. The catalytic degradation of MB using Hem@Gel under (A) various concentrations of H_2O_2 ; (B) various concentrations of Hem@Gel. In (A), $[H_2O_2]=3.75$ mM, $[MB]_0=75 \mu$ M, pH=7; in (B), $[Hem@Gel]=37.5 \mu$ M, $[MB]_0=75 \mu$ M, pH=7.

Figure S5. The influence of additives on the performance of Hem@Gel; [Hem@Gel]=37.5 μ M, [MB]₀=75 μ M, [H₂O₂]₀ = 3.75 mM, pH=7.

Figure S6. The catalytic degradation of four dyes by different formulation of hemins. The concentration of hemin in all formulations of catalysts are all 37.5μ M. [H₂O₂]₀= 3.75mM, [Dyes]₀=75 μ M.

Figure S7. Relative content of hemin after each recycle of catalytic reactions, data obtained by UV-Vis characterization.

Figure S8. XPS of Fe2p peak of (A) Hem@Gel and (B) Hem/Gel

Figure S9. EPR spectrum of H_2O_2 +[Hem@Gel] in the presence of DMPO as radical trapping agent. The quartet signal indicated the formation of **•**OH radical.

Figure S10. Physical absorption of the dye (AZO) by Hem@Gel, free hemin and nanogel. [Hem@Gel] =37.5 μ M, [MB]₀=75 μ M, pH=7.