Supporting Information for

Synthesis of ABA triblock copolymer nanoparticles by polymerization induced

self-assembly and their application as efficient emulsifier

Yakun Guo,^a Yuewen Yu^a, Keyu Shi^{* a} and Wangqing Zhang^{* a,b}

1 Scheme S1

Scheme S1. RAFT reagents BDMAT and CDTPA.

2 Synthesis and characterization of PHPMA-b-PS diblock copolymer nanoparticles

1) Table S1

Polymer ^a	[M]:[CTA]:[I]	Time	Conv. ^b	$M_{\rm n}({\rm kg/mol})$			Dſ	$D_{\text{TEM}}{}^{g}$	${D_{\mathrm{h}}}^{h}$
		(h)	(%)	$M_{ m n,th}{}^c$	$M_{n,\mathrm{GPC}}^d$	$M_{n,\mathrm{NMR}}^{e}$	D^{s}	(nm)	(nm)
H ₃₅	175:5:1	8	98.6	5.4	5.4	-	1.14	-	-
H ₆₄	325:5:1	8	98.2	9.6	9.4	-	1.16	-	-
H99	500:5:1	8	98.9	14.6	14.2	-	1.08	-	-
H ₁₂₃	650:5:1	8	94.8	18.1	17.6	-	1.08	-	-
$H_{64}S_{93}$	300:3:1	24	92.8	19.3	17.7	20.4	1.18	17	34
$H_{64}S_{177}$	600:3:1	24	88.4	28.1	36.0	33.2	1.06	22	37
$H_{64}S_{274}$	900:3:1	24	91.4	38.2	43.2	39.4	1.12	23	50
$H_{64}S_{367}$	1200:3:1	24	91.8	47.8	58.2	50.5	1.12	31	55
$H_{35}S_{270}$	900:3:1	24	90.1	33.5	39.7	34.4	1.04	35	69
$H_{99}S_{272}$	900:3:1	24	90.5	43.0	46.5	44.1	1.05	22	43
$H_{123}S_{266}$	900:3:1	24	88.6	45.8	49.1	50.5	1.13	21	36

Table S1. Summary of the synthesis of PHPMA macro-CTA and PHPMA-*b*-PS.

^{*a*} H represents PHPMA, S represents PS and HS represents the PHPMA-*b*-PS diblock copolymer. ^{*b*} The monomer conversion determined by ¹H NMR analysis. ^{*c*} The theoretical molecular weight determined by monomer conversion according to eqn 1. ^{*d*} The molecular weight determined by GPC analysis. ^{*e*} The molecular weight determined by ¹H NMR analysis. ^{*f*} The \mathcal{D} (M_w/M_n) values determined by GPC analysis. ^{*g*} The diameter of nanoparticles was obtained by analysis of 50 particles with the help of TEM. ^{*h*} The hydrodynamic diameter (*D_h*) of nanoparticles by DLS analysis.

2) ¹H NMR spectra

Figure S1. The ¹H NMR spectra of PHPMA₆₄-*b*-PS₂₇₄.

Figure S2. The GPC traces of PHPMA-*b*-PS.

Figure S3. The GPC traces of PHPMA-*b*-PS.

4) TEM image

Figure S4. The TEM images of the PHPMA₆₄-*b*-PS diblock copolymer nanoparticles of H₆₄S₉₃ (A), H₆₄S₁₇₇ (B), H₆₄S₂₇₄ (C) and H₆₄S₃₆₇ (D) respectively.

Figure S5. The TEM images of the PHPMA-*b*-PS₂₇₀ diblock copolymer nanoparticles of H₃₅S₂₇₀ (A), H₆₄S₂₇₄ (B), H₉₉S₂₇₂ (C) and H₁₂₃S₂₆₆ (D) respectively.

5) DLS analysis

Figure S6. Hydrodynamic diameter (D_h) of the PHPMA-*b*-PS triblock copolymer nanoparticles of H₆₄S₉₃, H₆₄S₁₇₇, H₆₄S₂₇₄ and H₆₄S₃₆₇.

Figure S7. Hydrodynamic diameter (D_h) of the PHPMA-*b*-PS triblock copolymer nanoparticles of H₃₅S₂₇₀, H₆₄S₂₇₄, H₉₉S₂₇₂ and H₁₂₃S₂₆₆.