Supplementary Information

# Well-defined hydrogen and organofunctional polysiloxanes with spiro-

#### fused siloxane backbones

Takahiro Kawatsu, Keita Fuchise, Katsuhiko Takeuchi, Jun-Chul Choi, Kazuhiko Sato, Kazuhiro Martsumoto\*

Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

\*K. M.: kazuhiro.matsumoto@aist.go.jp

# Table of Contents

| General information                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| Calculated molecular weights relative to poly(styrene) standards and actual molecular weights of                                             |
| separated peaks in approximate number distribution of polysiloxanes 2 (Table S1)                                                             |
| Comparing <sup>1</sup> H NMR spectra of spirosiloxane <b>1a</b> , <i>n</i> -hexylsilane, and polysiloxane <b>2b</b> (Figure S1) S5           |
| <sup>29</sup> Si{ <sup>1</sup> H} NMR spectrum of polysiloxane <b>2b</b> (Figure S2)                                                         |
| MALDI-TOF MS spectrum of polysiloxane <b>2b</b> (Figure S3)                                                                                  |
| Comparing <sup>1</sup> H NMR spectra of spirosiloxane <b>1b</b> , phenylsilane, and polysiloxane <b>2c</b> (Figure S4) S7                    |
| <sup>29</sup> Si{ <sup>1</sup> H} NMR spectrum of polysiloxane <b>2c</b> (Figure S5)                                                         |
| MALDI-TOF MS spectrum of polysiloxane <b>2c</b> (Figure S6)                                                                                  |
| <sup>1</sup> H NMR spectra of polysiloxane <b>2a</b> ' prepared under more concentrated conditions and polysiloxane                          |
| 2a" prepared under more diluted conditions (Figure S7)                                                                                       |
| MALDI-TOF MS spectra of polysiloxane 2a' prepared under more concentrated conditions and                                                     |
| polysiloxane 2a" prepared under more diluted conditions (Figure S8)                                                                          |
| Molecular weight distributions of polysiloxane 2a' prepared under more concentrated conditions and                                           |
| polysiloxane 2a" prepared under more diluted conditions, determined by SEC (Figure S9)                                                       |
| A zoomed-in version of the molecular weight distributions of polysiloxanes 2a-2c determined by                                               |
| SEC (Figure S10)                                                                                                                             |
| SEC curves of polysiloxanes 2a-2c (Figure S11)                                                                                               |
| Comparing <sup>1</sup> H NMR spectra of polysiloxanes <b>2a</b> , <b>3a</b> , <b>3b</b> , <b>3c</b> , <b>3d</b> , and <b>3e</b> (Figure S12) |
| Molecular weight distributions of polysiloxanes <b>3a-3e</b> determined by SEC (Figure S13)                                                  |
| Preparation of spirosiloxane monomers 1                                                                                                      |
| Preparation of hydrogen polysiloxanes 2                                                                                                      |
| Typical procedure for the synthesis of polysiloxane <b>3a</b>                                                                                |
| <sup>1</sup> H, <sup>13</sup> C{1H}, and <sup>29</sup> Si{ <sup>1</sup> H} NMR Charts (Figure S14-S43)                                       |

#### **General Information**

All experimental manipulations involving air-sensitive compounds were performed in a nitrogen atmosphere of MBRAUN LABmaster Pro SP glove box.

All chemicals were reagent grade and used as received without further purification. Tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>), tetrakis(dimethylsilyloxy)silane, phenylsilane, Karstedt's catalyst, 1-octene, allyl glycidyl ether, ethylene glycol monoallyl ether, and 4-chlorostyrene were purchased from Tokyo Chemical Industry Co., Ltd. Toluene, *n*-hexane, acetone, and CDCl<sub>3</sub> were purchased from Fujifilm Wako Pure Chemical Corporation. *n*-Hexylsilane was purchased from Aldrich. Vinylpentamethyldisiloxane was purchased from Gelest, Inc.

Column chromatography was performed with silica gel (Kanto Silica gel 60 N, 100-210 µm) or activated alumina (Fujifilm Wako Pure Chemical Corporation). Gel Permeation Chromatography (GPC) was performed with a YMC Multiple Preparative HPLC LC-Forte/R using YMC-GPC T4000-40 & YMC-GPC T2000-40 columns.

NMR spectra were recorded on Bruker AVANCE III HD (<sup>1</sup>H NMR at 600 MHz; <sup>13</sup>C{<sup>1</sup>H} NMR at 150 MHz; <sup>29</sup>Si{<sup>1</sup>H} NMR at 119MHz) NMR spectrometer. The High-resolution ESI mass spectra were obtained on Bruker micrOTOF II. The matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectra were collected on Bruker Autoflex Speed. Differential Scanning Calorimetry (DSC) analyses were performed using HITACHI DSC7020.

Size-exclusion chromatography (SEC) was performed at 45 °C using a Waters ACQUITY Advanced Polymer Chromatography (APC) System consisting of a p-Isocratic Solvent Manager (Model AIS), Sample Manager pFTN (Model ASM), Column Manager-S (Model AZC), PDA TS Detector (Model ADT), and Refractive Index (RI) Detector (Model URI) equipped with a Waters APC<sup>TM</sup> XT45 column (linear, 4.6 mm × 150 mm; pore size, 4.5 nm; bead size, 1.7 µm; exclusion limit, 5000), a Waters APC<sup>TM</sup> XT200 column (linear, 4.6 mm × 150 mm; pore size, 20.0 nm; bead size, 2.5 µm; exclusion limit, 70 000), and a Waters APC<sup>TM</sup> XT450 column (linear, 4.6 mm × 150 mm; pore size, 45.0 nm; bead size, 2.5 µm; exclusion limit, 400 000) in toluene at a flow rate of 0.70 mL min<sup>-1</sup>. The numberaverage molecular weight  $(M_{n,SEC})$  and the molecular weight dispersity  $(D_M)$  were determined based on a calibration curve prepared using polystyrene (PS) samples from a TSKgel<sup>®</sup> standard polystyrene oligomer kit (Tosoh) with weight-average molecular mass ( $M_w$ ) and ( $D_M$ ) values of 19.0×10<sup>5</sup> kDa (1.04),  $9.64 \times 10^4$  g mol<sup>-1</sup> (1.01),  $3.79 \times 10^4$  g mol<sup>-1</sup> (1.01),  $1.74 \times 10^4$  g mol<sup>-1</sup> (1.01),  $1.02 \times 10^4$  g mol<sup>-1</sup> (1.02),  $5.06 \times 10^3$  g mol<sup>-1</sup> (1.02),  $2.63 \times 10^3$  g mol<sup>-1</sup> (1.05),  $1.01 \times 10^3$  g mol<sup>-1</sup> (1.16), and  $5.9 \times 10^2$  g mol<sup>-1</sup> <sup>1</sup> (1.19), along with PS samples from Chemco Co. with  $M_w$  ( $D_M$ ) values of 17.0×10<sup>5</sup> g mol<sup>-1</sup> (<1.06),  $4.75 \times 10^4$  g mol<sup>-1</sup> (1.06),  $9.00 \times 10^3$  g mol<sup>-1</sup> (1.04), and  $4.00 \times 10^3$  g mol<sup>-1</sup> (1.03). The values of refractive index increment, dn/dc, were found to be positive for 2a and negative for 2b and 2c.

| nalvailavana |                    | M.W. of separated peak/Da |              |              |              |  |  |
|--------------|--------------------|---------------------------|--------------|--------------|--------------|--|--|
| porysnoxane  |                    | <i>n</i> = 3              | <i>n</i> = 4 | <i>n</i> = 5 | <i>n</i> = 6 |  |  |
| 2.           | PS-equivalent M.W. | 1230                      | 1630         | 2070         | 2540         |  |  |
| 2a           | actual M.W.        | 2208                      | 2944         | 3680         | 4416         |  |  |
| 21           | PS-equivalent M.W. | 1130                      | 1490         | 1890         | 2330         |  |  |
| 20           | actual M.W.        | 2232                      | 2977         | 3721         | 4465         |  |  |
| 2c           | PS-equivalent M.W. | 1020                      | 1330         | 1730         | 2160         |  |  |
|              | actual M.W.        | 2257                      | 3009         | 3761         | 4513         |  |  |

**Table S1.** Calculated molecular weights relative to poly(styrene) standards and actual molecularweights of separated peaks in approximate number distribution of polysiloxanes 2



Figure S1. Comparing the <sup>1</sup>H NMR spectra of spirosiloxane 1a, *n*-hexylsilane, and polysiloxane 2b. (a) spirosiloxane 1a, (b) *n*-hexylsilane, and (c) polysiloxane 2b ( $M_{n,SEC} = 3.86$  kDa,  $D_M = 2.96$ ), in CDCl<sub>3</sub>.



n = 3



**Figure S3.** Positive-ion MALDI-TOF mass spectrum of macrocyclic polysiloxanes **2b** ( $M_{n,SEC} = 3.86$  kDa,  $D_M = 2.96$ ) acquired in reflector mode using DCTB as the matrix and sodium trifluoroacetate as the cationising agent.



Figure S4. Comparing the <sup>1</sup>H NMR spectra of spirosiloxane 1b, phenylsilane, and polysiloxane 2c. (a) spirosiloxane 1b, (b) phenylsilane, and (c) polysiloxane 2c ( $M_{n,SEC} = 2.51$  kDa,  $D_M = 2.40$ ), in CDCl<sub>3</sub>.



n = 3



**Figure S6.** Positive-ion MALDI-TOF mass spectrum of macrocyclic polysiloxanes **2c** ( $M_{n,SEC} = 2.51$  kDa,  $D_M = 2.40$ ) acquired in reflector mode using DCTB as the matrix and sodium trifluoroacetate as the cationising agent.



Figure S7. <sup>1</sup>H NMR spectra of (a) polysiloxane 2a' prepared under more concentrated conditions ( $[1a]_0 = 25 \text{ mM}$ ) and (b) polysiloxane 2a" prepared under more diluted conditions ( $[1a]_0 = 6.25 \text{ mM}$ ).



Figure S8. MALDI-TOF MS spectrum of (a) polysiloxane 2a' prepared under more concentrated conditions ( $[1a]_0 = 25 \text{ mM}$ ) and (b) polysiloxane 2a" prepared under more diluted conditions ( $[1a]_0 = 6.25 \text{ mM}$ ).



Figure S9. Molecular weight distributions of (a) polysiloxane 2a' prepared under more concentrated conditions ( $[1a]_0 = 25 \text{ mM}$ ) and (b) polysiloxane 2a" prepared under more diluted conditions ( $[1a]_0 = 6.25 \text{ mM}$ ), determined by SEC using toluene as the eluent, narrowly dispersed poly(styrene)s as standards, and a differential refractometer detector.



Figure S10. A zoomed-in version of the molecular weight distributions of polysiloxanes 2a-2c determined by SEC



**Figure S11.** SEC curves of polysiloxanes **2a-2c** using toluene as the eluent and a differential refractometer detector.



Figure S12. Comparing <sup>1</sup>H NMR spectra of (a) polysiloxane 2a, (b) polysiloxane 3a, (c) polysiloxane 3b, (d) polysiloxane 3c, (e) polysiloxane 3d, and (f) polysiloxane 3e, in CDCl<sub>3</sub>.



**Figure S13**. Molecular weight distributions of polysiloxanes **3a-3e** determined by SEC using toluene as the eluent, narrowly dispersed poly(styrene)s as standards, and a differential refractometer detector.

# **Preparation of Spirosiloxane Monomers 1**

4,12-diisopropoxy-2,2,6,6,10,10,14,14-octamethyl-4,12-diphenyl-1,3,5,7,9,11,13,15-octaoxa-2,4,6,8,10,12,14-heptasilaspiro[7.7]pentadecane (1a)



B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (34.2 mg, 5 mol%) and acetone (390 μL, 5.2 mmol) were dissolved in toluene (20 mL). To the mixture was added Si(OSiMe<sub>2</sub>H)<sub>4</sub> (482 μL, 1.3 mmol) with stirring at room temperature. After 30 min, phenylsilane (321 μL, 2.6 mmol) was added. After 1 h, acetone (195 μL, 2.6 mmol) was added. After 2 h, the reaction mixture was passed through a short silica gel pad (eluent: *n*-hexane). The crude product was purified by GPC (eluent: *n*-hexane) to give **1a** as a colourless oil (551.6 mg, 59%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.68-7.62 (m, 4H), 7.44-7.40 (m, 2H), 7.39-7.33 (m, 4H), 4.26 (sep, *J* = 6.1 Hz, 2H), 1.22 (d, *J* = 6.1Hz, 12H), 0.26 (s, 6H), 0.20 (s, 6H), 0.13 (s, 6 H), 0.07 ppm (s, 6H). <sup>13</sup>C {<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>): δ 134.3, 133.5, 130.1, 127.8, 65.6, 25.5, 0.62, 0.54, 0.45, 0.37. <sup>29</sup>Si {<sup>1</sup>H} NMR (119 Hz, CDCl<sub>3</sub>): δ -16.72, -16.73, -72.7, -105.6. HRMS (ESI): *m/z* calculated for [C<sub>26</sub>H<sub>52</sub>NO<sub>10</sub>Si<sub>7</sub>] (M+NH<sub>4</sub>): 734.1971; found 734.1963.

# 4,12-dihexyl-4,12-diisopropoxy-2,2,6,6,10,10,14,14-octamethyl-1,3,5,7,9,11,13,15-octaoxa-2,4,6,8,10,12,14-heptasilaspiro[7.7]pentadecane (1b)



B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (76.8 mg, 5 mol%) and acetone (901 µL, 12.0 mmol) were dissolved in toluene (45 mL). To the mixture was added Si(OSiMe<sub>2</sub>H)<sub>4</sub> (1116 µL, 3.0 mmol) with stirring at room temperature. After 30 min, *n*-hexylsilane (987 µL, 6.0 mmol) was added at 0 °C. After 20 h, acetone (540 µL, 7.2 mmol) was added. After 8 h, the reaction mixture was passed through a short silica gel pad (eluent: *n*-hexane). The crude product was purified by GPC (eluent: *n*-hexane) to give **1b** as a colourless oil (1.35 g, 61%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  4.19 (sep, *J* = 6.1 Hz, 2H), 1.44-1.21 (m, 16H), 1.18 (d, *J* = 6.1 Hz, 12 H), 0.88 (t, *J* = 7.0 Hz, 6H), 0.60-0.52 (m, 4H), 0.16 (s, 6H), 0.15 (s, 6H), 0.131 (s, 6H) 0.126 (s, 6H). <sup>13</sup>C{<sup>1</sup>H} NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  65.0, 32.8, 31.7, 25.6, 23.1, 22.7, 14.3, 13.2, 0.52, 0.51 (two signals are missing due to overlap).

<sup>29</sup>Si{<sup>1</sup>H} NMR (119 Hz, CDCl<sub>3</sub>): δ –18.015, –18.024, –59.8, –105.5.

HRMS (ESI): *m/z* calculated for [C<sub>26</sub>H<sub>68</sub>NO<sub>10</sub>Si<sub>7</sub>] (M+NH<sub>4</sub>): 750.3223; found 750.3214.

#### **Preparation of Hydrogen Polysiloxanes 2**

#### hydrogen polysiloxane 2a



B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (10.2 mg, 1 mol%) and **1a** (1.44 g, 2.0 mmol) were dissolved in toluene (160 mL). To the mixture was added phenylsilane (247  $\mu$ L, 2.0 mmol) with stirring at room temperature. After 20 h, the reaction mixture was passed through a short alumina pad (eluent: *n*-hexane), and the volatiles was removed under reduced pressure to give hydrogen polysiloxane **2a** as a colourless oil (1.46 g, >95%). The crude product was analysed by NMR, SEC, DSC, and MALDI-TOF MS without further purification and used for the next reactions.

<sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, and <sup>29</sup>Si{<sup>1</sup>H} NMR spectra of the product are shown in Figure S9-S11.



#### hydrogen polysiloxane 2b

B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (2.6 mg, 1 mol%) and **1a** (358.6 mg, 0.5 mmol) were dissolved in toluene (40 mL). To the mixture was added *n*-hexylsilane (80.6  $\mu$ L, 0.5 mmol) with stirring at room temperature. After 20 h, the reaction mixture was passed through a short alumina pad (eluent: *n*-hexane), and the volatiles was removed under reduced pressure to give hydrogen polysiloxane **2b** as a colourless oil (354.0 mg, 95%). The crude product was analysed by NMR, SEC, DSC, and MALDI-TOF MS without further purification.

<sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, and <sup>29</sup>Si{<sup>1</sup>H} NMR spectra of the product are shown in Figure S12-S14.

#### hydrogen polysiloxane 2c



B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (1.2 mg, 1 mol%) and **2a** (178.1 mg, 0.24 mmol) were dissolved in toluene (19 mL). To the mixture was added phenylsilane (29.6  $\mu$ L, 0.24 mmol) with stirring at room temperature. After 20 h, the reaction mixture was passed through a short alumina pad (eluent: *n*-hexane), and the volatiles was removed under reduced pressure to give hydrogen polysiloxane **2c** as a colourless oil (173.7 mg, >95%). The crude product was analysed by NMR, SEC, DSC, and MALDI-TOF MS without further purification.

<sup>1</sup>H, <sup>13</sup>C{<sup>1</sup>H}, and <sup>29</sup>Si{<sup>1</sup>H} NMR spectra of the product are shown in Figure S15-S17.

### Typical Procedure for the Synthesis of Polysiloxane 3a

Karstedt's catalyst (0.1 mg, 0.1  $\mu$ mol) and **2a** (73.7 mg, 0.10 mmol) were dissolved in toluene (0.4 mL). To the mixture was added 1-octene (16  $\mu$ L, 0.10 mmol) with stirring at room temperature. After 10 h, the reaction mixture was passed through a short silica gel pad (eluent: *n*-hexane) to give polysiloxane **3a** as a pale yellow oil (84.0 mg, >95%). The crude product was used for NMR and MALDI-TOF MS analyses without further purification.

Other polysiloxanes **3b-3e** were also synthesised in the same procedure by using different olefins.

#### polysiloxane 3a



pale yellow oil (84.0 mg, >95%)  $^{1}$ H,  $^{13}$ C{ $^{1}$ H}, and  $^{29}$ Si{ $^{1}$ H} NMR spectra of the product are shown in Figure S18-S20.

#### polysiloxane 3b



pale yellow oil (80.1 mg, 94%)  $^{1}H$ ,  $^{13}C{^{1}H}$ , and  $^{29}Si{^{1}H}$  NMR spectra of the product are shown in Figure S21-S23.

polysiloxane 3c



pale yellow oil (78.8 mg, 94%)  $^{1}H$ ,  $^{13}C\{^{1}H\}$ , and  $^{29}Si\{^{1}H\}$  NMR spectra of the product are shown in Figure S24-S26.

#### polysiloxane 3d



yellow oil (85.8 mg, >95%)  $^{1}H$ ,  $^{13}C\{^{1}H\}$ , and  $^{29}Si\{^{1}H\}$  NMR spectra of the product are shown in Figure S27-S29.

#### polysiloxane 3e



pale yellow oil (90.3 mg, >95%)  $^{1}$ H,  $^{13}$ C{ $^{1}$ H}, and  $^{29}$ Si{ $^{1}$ H} NMR spectra of the product are shown in Figure S30-S32.



### Figure S14. 1H NMR Spectra of Spirosiloxane 1a

## Figure S15. 13C NMR Spectra of Spirosiloxane 1a



#### Figure S16. 29Si NMR Spectra of Spirosiloxane 1a



### Figure S17. 1H NMR Spectra of Spirosiloxane 1b







| ~ | · · · · ·        | · · · · · · · · · · · · · · · · · · ·                                 |                                                          |      | <br>J |  | <br> | WDW<br>SSB<br>LB<br>GB<br>PC                                                                                                                                                                                                                                                                                                  | EM<br>0<br>1.00 Hz<br>0<br>1.40                                                                                                                                                                                                                                                                                                   |
|---|------------------|-----------------------------------------------------------------------|----------------------------------------------------------|------|-------|--|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Hex,<br>$\sim$ O | Me₂<br>O <sup>_Si</sup> .O<br>Si Si<br>O <sub>Si</sub> .O<br>Me₂<br>1 | Me₂<br>O´ <sup>Si</sup> .O<br>Si Si<br>O`SíO<br>Me₂<br>b | OHex |       |  |      | NAME S<br>EXPNO<br>PROCNO<br>F2 - Acqu:<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0<br>===== C<br>SFO1<br>NUC1<br>P1<br>PLW1<br>==== C<br>SFO2<br>NUC2<br>CPDPRG[2<br>PCPD2<br>PLW2<br>PLW12<br>PLW13<br>F2 - Proc<br>SI<br>SF | spirosiloxanelb<br>11<br>1<br>isition Parameter<br>20200916<br>7.43<br>spect<br>5 mm CPBBO BB-<br>zgpg30<br>65536<br>CDC13<br>64<br>2<br>33333.332 Hz<br>0.508626 Hz<br>0.9830400 sec<br>193.87<br>15.000 usec<br>19.62 usec<br>298.0 K<br>2.00000000 sec<br>0.03000000 sec<br>1<br>HANNEL f1 =================================== |

#### Figure S19. 29Si NMR Spectra of Spirosiloxane 1b



# Figure S20. 1H NMR Spectra of Polysiloxane 2a

5.15





|              | $Me_2 \qquad Me_2 \qquad Ph \qquad H \\ Ph \qquad O^{-Si} O O^{-Si} O^$ | Current Data Parameters<br>NAME polysiloxane2a<br>EXPNO 10<br>PROCNO 1<br>F2 - Acquisition Parameter<br>Date_ 20190827<br>Time 12.22<br>INSTRUM spect<br>PROBHD 5 mm PABBO BB/<br>PULPROG 2g30<br>TD 65536<br>SOLVENT CDC13<br>NS 8<br>DS 2<br>SWH 12019.230 Hz<br>FIDRES 0.183399 Hz<br>AQ 2.7262976 sec<br>RG 32<br>DW 41.600 usec<br>DE 10.66 usec<br>TE 298.0 K<br>D1 1.0000000 sec<br>TD0 1<br> |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 8 7<br>86R |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 ppm                                                                                                                                                                                                                                                                                                                                                                                                |

#### Figure S21. 13C NMR Spectra of Polysiloxane 2a



### Figure S22. 29Si NMR Spectra of Polysiloxane 2a



### Figure S23. 1H NMR Spectra of Polysiloxane 2b



#### Figure S24. 13C NMR Spectra of Polysiloxane 2b



#### Figure S25. 29Si NMR Spectra of Polysiloxane 2b



# Figure S26. 1H NMR Spectra of Polysiloxane 2c



#### Figure S27. 13C NMR Spectra of Polysiloxane 2c



### Figure S28. 29Si NMR Spectra of Polysiloxane 2c



### Figure S29. 1H NMR Spectra of Polysiloxane 3a







### Figure S30. 13C NMR Spectra of Polysiloxane 3a



#### Figure S31. 29Si NMR Spectra of Polysiloxane 3a



# Figure S32. 1H NMR Spectra of Polysiloxane 3b





| SF01 600.1330006 MHz   NUC1 1H   P1 11.00 usec   PLW1 25.00000000 MHz   WDW EM   SSB 0   LB 0.20 Hz   GB 0   PC 1.00 |       | $\begin{array}{cccc} & Me_2 & Me_2 \\ Ph_{O}^{Si_{O}} & O^{Si_{O}} \\ & Si_{Si}^{O} & Si_{O}^{O} \\ & Si_{O}^{O} & O^{Si_{O}} \\ & Me_2 & Me_2 \end{array}$ | Ph, |   |       | $\begin{array}{cccc} \mbox{Current Data Parameters} \\ \mbox{NAME} & \mbox{polysiloxane3b} \\ \mbox{EXPNO} & 10 \\ \mbox{PROCNO} & 1 \\ \mbox{F2} - \mbox{Acquisition Parameter} \\ \mbox{Date} & 20191023 \\ \mbox{Time} & 11.15 \\ \mbox{Instrum} & \mbox{spect} \\ \mbox{PrOBHD} & 5 \mbox{mm PABBO BB} \\ \mbox{PuLPROG} & \mbox{zg30} \\ \mbox{TD} & 65536 \\ \mbox{SOLVENT} & \mbox{CDC13} \\ \mbox{NS} & 8 \\ \mbox{DS} & 2 \\ \mbox{SWH} & 12019.230 \mbox{Hz} \\ \mbox{FIDRES} & 0.183399 \mbox{Hz} \\ \mbox{AQ} & 2.7262976 \mbox{sec} \\ \mbox{RG} & 25.4 \\ \mbox{DW} & 41.600 \mbox{usec} \\ \mbox{DE} & 10.66 \mbox{usec} \\ \mbox{DE} & 298.0 \mbox{K} \\ \mbox{D1} & 1.00000000 \mbox{sec} \\ \mbox{TD0} & 1 \\ \end{array}$ |
|----------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 8 7 6 5 4 3 2 1 0 ppm                                                                                              | 9 8 7 | 6 5 4                                                                                                                                                       | 3 2 | 1 | 0 ppm | CHANNEL f1     SF01   600.1330006 MHz     NUC1   1H     P1   11.00 usec     PLW1   25.00000000 W     F2 - Processing parameters   SI     65536   SF     SF   600.1300000 MHz     WDW   EM     SSB   0     LB   0.20 Hz     GB   0     PC   1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Figure S33. 13C NMR Spectra of Polysiloxane 3b



#### Figure S34. 29Si NMR Spectra of Polysiloxane 3b



Figure S35. 1H NMR Spectra of Polysiloxane 3c





#### Figure S36. 13C NMR Spectra of Polysiloxane 3c



#### Figure S37. 29Si NMR Spectra of Polysiloxane 3c





#### Figure S39. 13C NMR Spectra of Polysiloxane 3d



### Figure S40. 29Si NMR Spectra of Polysiloxane 3d



# Figure S41. 1H NMR Spectra of Polysiloxane 3e





| SiMe                                                                                                                                                                                                   | Current Data Parameters<br>NAME polysiloxane3e<br>EXPNO 10<br>PROCNO 1                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} Me_2 & Me_2 & Ph, \\ Me_2 & Me_2 & Ph, \\ Ph, & O^{-Si}, & O, & O^{-Si}, \\ O, & Si, & Si, \\ O^{-Si}, & O, & O^{-Si}, \\ O^{-Si}, & O^{-Si}, & O^{-Ph}, \\ Me_2 & Me_2 \end{array}$ | $\begin{array}{ccccc} F2 & - \ Acquisition \ Parameter \\ Date_ & 20200716 \\ Time & 8.27 \\ INSTRUM & spect \\ PROBHD & 5 \ mm \ CP2 \ BB-1H \\ PULPROG & zg30 \\ TD & 65536 \\ SOLVENT & CDC13 \\ NS & 8 \\ DS & 2 \\ SWH & 12019.230 \ Hz \\ FIDRES & 0.183399 \ Hz \\ AQ & 2.7262976 \ sec \\ RG & 16 \\ DW & 41.600 \ usec \\ DE & 15.65 \ usec \\ TE & 298.0 \ K \\ D1 & 1.0000000 \ sec \\ TD0 & 1 \\ \end{array}$ |
|                                                                                                                                                                                                        | ID0 I   SF01 600.1330006 MHz   NUC1 1H   P1 12.00 usec   PLW1 15.00000000 W   F2 - Processing parameters 65536   SF 600.1300128 MHz   WDW EM   SSB 0   LB 0.20 Hz   GB 0   PC 1.00                                                                                                                                                                                                                                        |
| 9 8 7 6 5 4 3 2 1 0 ppm                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                           |

### Figure S42. 13C NMR Spectra of Polysiloxane 3e



#### Figure S43. 29Si NMR Spectra of Polysiloxane 3e

