Synthesis and characterization of fully biobased polyesters

with tunable branched architectures

Nejib Kasmi,¹ Catherine Pinel,² Denilson Da Silva Perez,³ Reiner Dieden,¹ Youssef Habibi¹*

¹Department of Materials Research and Technology (MRT), Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg. ²University Lyon, University Claude Bernard, CNRS, IRCELYON, UM5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France

³Institut FCBA, InTechFibres, 38044 Grenoble, France

* Corresponding authors. Youssef Habibi, E-mail: <u>Youssef.Habibi@list.lu</u>

Supplementary Information

Carboxyl terminated SucA/BTO(-COOH)

FigureS1:¹HNMRspectrum of SucA/BTO(-COOH) in dmso-d₆

FigureS2:¹³CNMRspectrum ofSucA/BTO(-COOH) in dmso-d₆

Figure S 3: COSY NMR spectrum of SucA/BTO(-COOH) in dmso-d₆

Figure S 4: HSQC NMR spectrum of SucA/BTO(-COOH) in dmso-d₆

Figure S 5: NMR spectrum of SucA/BTO(-COOH) in dmso-d₆

Figure S 6: ¹H NMR spectrum of SucA/HTO(-COOH) in dmso-d₆

 $Figure S7: {}^{13}CNMR spectrum of SucA/HTO(-COOH) in dmso-d_6$

Figure S8: ¹³CNMR spectrum of SucA/HTO(-COOH) in dmso-d₆

Figure S 9: HSQC NMR spectrum of SucA/HTO(-COOH) in dmso-d₆

Figure S 10: HMBC NMR spectrum of SucA/HTO(-COOH) in dmso-d₆

AdiA/BTO(-COOH)

Figure S 11: ¹H NMR spectrum of AdiA/BTO(-COOH) in dmso-d₆

Figure S 12: ¹³C NMR spectrum of AdiA/BTO(-COOH) in dmso-d₆

Figure S 13: COSY NMR spectrum of AdiA/BTO(-COOH) in dsmo-d₆

Figure S 14: HSQC NMR spectrum of AdiA/BTO(-COOH) in dmso-d₆

Figure S 15 HMBC NMR spectrum of AdiA/BTO(-COOH) in dmso-d₆

AdA/HTO(-COOH)

Figure S 16:¹H NMR spectrum of AdiA/HTO(-COOH) in dmso-d₆

Figure S 17: ¹³C spectrum of AdiA/HTO(-COOH) in dmso-d₆

Figure S 18: COSY NMR spectrum of AdiA/HTO(-COOH) in dmso-d₆

Figure S 19: HSQC NMR spectrum of Adi/HTO(-COOH) in dmso-d₆

Figure S 20: HMBC NMR spectrum of AdiA/HTO(-COOH) in dmso-d₆

Figure S 21: ¹H NMR spectrum of AzeA/BTO(-COOH) in dmso-d₆

Figure S 22: ¹³C NMR spectrum of AzeA/BTO(-COOH) in dmso-d₆

Figure S 23: COSY NMR spectrum of AzeA/BTO(-COOH) in dmso-d₆

Figure S 24: HSQC spectrum of AzeA/BTO(-COOH) in dmso-d₆

Figure S 25: HMBC NMR spectrum of AzeA/BTO(-COOH) in dmso-d₆

Figure S 26: ¹H NMR spectrum of AzeA/HTO(-COOH) in dmso-d₆

Figure S 27: ¹³C NMR spectrum of AzeA/HTO(-COOH) in dmso-d₆

Figure S 28: COSY NMR spectrum of AzeA/HTO(-COOH) in dmso-d₆

Figure S 29: HSQC spectrum of AzeA/HTO(-COOH) in dmso-d₆

Figure S 30: HMBC NMR spectrum of AzeA/HTO(-COOH) in dsmo-d₆

hydroxyl terminated

SucA/BTO(-OH)

Figure S 31: ¹H NMR spectrum of SucA/BTO(-OH) in dmso-d₆

Figure S 32: ¹³C NMR spectrum of SucA/BTO(-OH) in dmso-d₆

Figure S 33: COSY NMR spectrum of SucA/BTO(-OH) in dmso-d₆

Figure S 34: HSQC NMR spectrum of SucA/BTO(-OH) in dmso-d₆

Figure S 35: HMBC NMR spectrum of SucA/BTO(-OH) in dmso-d₆

Figure S 36: ¹H NMR spectrum of SucA/HTO(-OH) in dmso-d₆

Figure S 37: ¹³C NMR spectrum of SucA/HTO(-OH) in dmso-d₆

Figure S 38: COSY NMR spectrum of SucA/HTO(-OH) in dmso-d₆

Figure S 39: HSQC NMR spectrum of SucA/HTO(-OH) in dmso-d₆

Figure S 40: HMBC NMR spectrum of SucA/HTO(-OH) in dmso-d₆

AdiA/BTO(-OH)

Figure S 41: ¹H NMR spectrum of AdiA/BTO(-OH) in dmso-d₆

Figure S 42: ¹³C NMR spectrum of AdiA/BTO(-OH) in dmso-d₆

Figure S 43: COSY NMR spectrum of AdiA/BTO(-OH) in dmso-d₆

Figure S 44: HSQC NMR spectrum of AdiA/BTO(-OH) in dmso-d6

Figure S 45: HMBC NMR Spectrum of AdiA/BTO(-OH) in dmso-d₆

Figure S 46: ¹H NMR spectrum of AdiA/HTO(-OH) in dsmo-d₆

Figure S 47: ¹³C NMR spectrum of Adi/HTO(-OH) in dmso-d₆

Figure S 48: COSY NMR spectrum of AdiA/HTO in dmso-d₆

Figure S 49: HSQC NMR spectrum of AdiA/HTO(-OH) in dmso-d₆

Figure S 50: HMBC NMR spectrum of AdiA/HTO(-OH) in dmso-d₆

Figure S 51: ¹H NMR spectrum of AzeA/BTO(-OH) in dmso-d₆

Figure S 52: ¹³C NMR spectrum of AzeA/BTO(-OH) in dmso-d₆

Figure S 53: COSY NMR spectrum of AzeA/BTO(-OH) in dmso-d₆

Figure S 54: HSQC NMR spectrum of AzeA/BTO(-OH) in dmso-d₆

Figure S 55: HMBC NMR spectrum of AzeA/BTO(-OH) in dmso-d₆

AzeA/HTO(-OH)

Figure S 56: ¹H NMR spectrum of AzeA/HTO(-OH) in dmso-d₆

Figure S 57: ¹³C NMR spectrum of AzeA/HTO in dmso-d₆

Figure S58: COSYNMR spectrum of AzeA/HTO(-OH) in dmso-d₆

Figure S 59: HSQC NMR spectrum of AzeA/HTO(-OH) in dmso-d₆

Figure S 60: HMBC NMR spectrum of AzeA/HTO(-OH) in dmso-d₆

Table S1: ¹H NMR chemical shifts of acid-ended branched polyesters in DMSO- d_6 (major peaks only). Ranges indicate regions where multiple peaks are found. (*: Chemical shifts read from HSQC; ** not observed)

Compound	1'	2'	3	4	4'	5	6'		□'	· · · · ·	□'□ □'	СООН
SucA/BTO (-COOH)	4.15	5.03	1.88		4.05			2.48	2.55			12.29
SucA/HTO (-COOH)	4.13,4.06*	4.98	1.55	1.30		1.55	3.99	2.48	2.55			**
AdiA/BTO (-COOH)	4.23,4.05*	5.08	1.88		4.04			2.21	2.29	1.51		12.01
AdiA/HTO (-COOH)	4.18,4.01*	4.99	1.56	1.31		1.56	3.98	2.20	2.28	1.51		12.01
AzeA/BTO (-COOH)	4.23,4.04*	5.08	1.87		4.03			2.18	2.25	1.49	1.25	11.95
AzeA/HTO (-COOH)	4.18,3.99*	4.98	1.55	1.3		1.55	3.98	2.17	2.26	1.48	1.25	11.95

Table S2: ¹³C NMR chemical shifts of acid-ended branched polyesters in DMSO- d_6 . Ranges indicate regions where multiple peaks are found. (** not observed)

Compound	1'	2'	3	4	4'	5	6'	_'	,	□ ' □ '	СООН	COOR
SucA/BTO (-COOH)	64.91	69.13	29.70		60.74			29.08			173.82	171.8-
												172.5
SucA/HTO (-COOH)	65.1	71.5	28.2	21.6		30.0	64.4	29.06-			**	**
								29.15				
AdiA/BTO (-COOH)	63.6-	64.4-	29.80		59.7-			33.4-	24.0-		174.73	172.5-
	69.0	72.5			63.5			33.9	24.6			173.2
AdiA/HTO (-COOH)	64.84	71.16	28.26	21.56		30.02	63.89	33.1-	24.0-		174.71	172.7-
								34.0	24.7			173.2
AzeA/BTO (-COOH)	61.6-	64.1-	29.80,		59.9-			33.77-	24.84	28.7-	174.92	172.7-
	69.1	72.5	32.91		61.9			34.0		28.85		173.4
AzeA/HTO (-COOH)	62.8-	67.7-	30.09	21.64		28.34	63.84	33.77-	24.9	28.8	174.92	172.8-
	68.5	74.8						34.1				173.4

Table S3: ¹H NMR chemical shifts of OH-ended branched polyesters in DMSO- d_6 . Ranges indicate regions where multiple peaks are found. (*: Chemical shifts read from HSQC; ** not observed; *** OH group signals are observed at 4.98 (m), 4.76 (m), 4.58(m), 4.54(t), 4.46(t), 4.40(t), 4.37(d), 4.34(t))

Compound	1	10H	1'	2	20H	2'	3	4	40H	4'	5	6'	6	6OH	□'	□'	'] ' '
SucA/BTO(-OH)	3.2-		3.87-	3.47-		4.8-	1.35-	3.2-3.5		3.87-					2.5-		
	3.5		4.21	3.8		5.2	1.93			4.21					2.6		
SucA/HTO(-OH)	3.24		3.88	3.34-		4.71-	1.55	1.28,1.41			1.18-	4.00	3.34-				
				3.63		5.00					1.44		3.42				
AdiA/BTO(-OH)	3.21-	***	3.88-	3.48-	***	4.82-	1.38-	3.21-3.54	***	3.88-					2.29-	1.53	
	3.54		4.25	3.79		5.22	1.94			4.25					2.31		
AdiA/HTO(-OH)	3.24	4.41	4.21-	3.35-	4.36	4.72-	1.56	1.20,1.43				4.21-	3.35-	4.33	2.29	1.53	
			3.86	3.63		5.01						3.86	4.43				
AzeA/BTO(-OH)			3.90	3.46-		4.8-				4.0-							
				3.79		5.20				4.1							
AzeA/HTO(-OH)	3.25		3.88 1942	3.3-				4.7-1.19-			1.54	3.99			2.27	1.51	1.25
				3.6		5.0	1.45										

Table S4: ¹³C NMR chemical shifts of OH-ended branched polyesters in DMSO- d_6 . Ranges indicate regions where multiple peaks are found.

Compound	1	1'	2	2'	3	4	4'	5	6'	6	□'	□'	□'□ □'	COOR
SucA/BTO (-OH)	56.9-	60.1-	64.6-	68.3-	29.2-	56.9-	60.1-				29.14			171.8-
	67.1	69.5	69.8	75.7	37.7	67.1	69.5							172.5
SucA/HTO (-OH)	66.43-	68.60-	68.0-	71.4-	32.89-	28.53-		21.56-	64.21-	60.91-				
	66.46	68.75	71.6	75.3	33.9	29.41		22.23	64.62	62.73				
AdiA/BTO (-OH)	57.2-	60.2-	65.35-	68.58-	29.8-	57.2-	60.2-				33.65	24.38		172.9-
	66.66	69.2	69.39	74.94	37.4	66.66	69.2							173.25
AdiA/HTO (-OH)	66.3	63.8-	67.9-	71.16-	32.61-	21.59-		28.32-	63.8-	60.7-	33.58-	24.30-		172.9-
		68.5-	71.7	74.90	34.50	22.22		28.85	68.5-	60.1	33.90	24.48		173.3
AzeA/BTO (-OH)		68.1-	65-	68.0-		60.2-								172.8-
		68.7	69.3	75.2		61.8								173.2
AzeA/HTO(-OH)	66.41-	66.6-	67.7-	71.2-	32.6-	21.65-		28.7	64.2-		33.78-	24.88-	28.5-	173.09-
	66.47	66.8	72	75.7	34.0	22.45			64.6		34.25	24.99	28.9	173.44