Electronic Supplementary Material

Design of an n-type, low glass transition temperature radical polymer

Teng Chi,^a Siddhartha Akkiraju,^b Zihao Liang,^b Ying Tan,^b Ho Joong Kim,^b Xikang Zhao,^b Brett M. Savoie,^{*,b} and Bryan W. Boudouris^{*,a,b}

^a Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA

^b Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, USA

* To whom correspondence should be addressed: bsavoie@purdue.edu (B.M.S.) and boudouris@purdue.edu (B.W.B.)

Figure S1. (a) ¹H NMR and (b) ¹³C NMR spectra of 2,6-di-tert-butyl-4-((3,5-di-tert-butyl-4-hydroxyphenyl)(4-(hydroxymethyl) phenyl)methylene)cyclohexa-2,5-dien-1-one (**5**).

Figure S2. (a) ¹H NMR and (b) ¹³C NMR spectra of 4-((4-((allyloxy)methyl)phenyl)(3,5-di-tert-butyl-4-hydroxyphenyl)methylene)-2,6-di-tert-butylcyclohexa-2,5-dien-1-one (**6**).

Figure S3. ¹H NMR spectrum of quenched PGMS (PGMS-H) in CDCl₃. PGMS was converted to PGMS-H by stirring with a 0.1 M HCl in methanol solution.

Figure S4. Second heating DSC trace of the PGMS-4 polymer. These data were acquired at a scan rate of 10 °C min⁻¹.

Figure S5. The molecular structure of PGMS-4. The radical content (r_{PGMS}) was calculated by using the following equation.

$$r_{PGMS} = f \frac{I_{PGMS}}{I_S} \times \frac{n_S}{n_{PGMS}} \times 100\%$$
 (Equation S1)

Here, I_{PGMS} and I_S are the EPR spectroscopy resonance intensity for PGMS and small galvinoxyl standard, respectively. Similarly, n_{PGMS} and n_s are the moles of PGMS and the small molecule standard that were loaded in the instrument. f (f = x/4 for PGMS-4) is the fraction of sites that have a galvinoxyl precursor unit present (i.e., the fraction of sites that have successfully undergone the coupling reaction to the polysiloxane backbone).

Figure S6. (a) A scanning electron microscopy (SEM) image of a device channel prior to coating the PGMS polymer. The image shows the two gold contacts and the insulating substrate on which the polymer was cast. Current-voltage (I-V) curves of (b) PGMS-4-13 and (c) PGMS-4-36 at different temperatures.