Supporting Information

Elucidating preparation-structure relationships for the morphology evolution during the

RAFT dispersion polymerization of N-acryloyl thiomorpholine

Fabian H. Sobotta,^{*a,b*}, Maren T. Kuchenbrod,^{*a,b*} Christian Grune,^{*c*} Dagmar Fischer,^{*b,d*} Stephanie Hoeppener,^{*a,b*} Johannes C. Brendel, **^{a,b}*

^aLaboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.

^bJena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.

^cPharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany.

^dPharmaceutical Technology, Department for Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany.

*Correspondence to J. C. Brendel (johannes.brendel@uni-jena.de)

Exp.	Polymer	Т [°С]	vol% _{Diox} [%]	с [М]	Mn ^[a] [kg mol ⁻¹]	Mn ^[b] [kg mol ⁻¹]	Ð ^[b]	D _H [nm]	PDI ^[c]	Morph. ^[d]
PNAMn										
P ₂₅	PNAM ₂₅				3.8	4.1	1.10	-	-	-
P50	PNAM ₅₀	70	0	6.5	7.3	7.1	1.06	-	-	-
P100	PNAM ₁₀₀				14.4	13.1	1.06	-	-	-
PNAM ₂₅ - <i>b</i> -NAT _n										
P25-1*		70	0	0.2	7.7	7.5	1.12	31	0.09	S
P ₂₅ -2*				0.6		7.5	1.13	46	0.15	S / W
P ₂₅ -3*				1		7.3	1.12	93	0.18	W
P ₂₅ -4	-		10	0.2		7.3	1.10	55	0.09	S / W
P ₂₅ -5	PNAM ₂₅ - <i>b</i> -PNAT ₂₅			0.6		7.1	1.10	119	0.21	W
P ₂₅ -6	_			1		7.0	1.08	-	-	bW
P ₂₅ -7			25	0.2		7.1	1.08	-	-	bW
P ₂₅ -8				0.6		7.0	1.08	-	-	bW
P ₂₅ -9				1		7.0	1.08	-	-	bW
P ₂₅ -10	– PNAM25- <i>b</i> -PNAT50	70	0	0.2	11.6	11.3	1.37	Р	Р	Р
P ₂₅ -11			10	0.2		11.1	1.17	42	0.06	S / sW
P ₂₅ -12				0.6		10.7	1.16	Р	Р	Р
P ₂₅ -13			25	0.2		10.5	1.08	88	0.06	V
P ₂₅ -14	PNAM25-b-PNAT60	70	10	0.2	13.2	11.8	1.27	79	0.12	S / sW
P ₂₅ -15	PNAM25-b-PNAT70	70	10	0.2	14.8	12.2	1.27	88	0.12	sW
P ₂₅ -16				0.6		12.8	1.24	Р	Р	Р
P ₂₅ -17			25	0.2		13.3	1.16	117	0.11	V
P ₂₅ -18	– PNAM ₂₅ - <i>b</i> -PNAT ₇₅	70	10	0.2	15.6	17.3	1.74	Р	Р	Р
P ₂₅ -19		70	25	0.2		13.6	1.19	Р	Р	Р
P ₂₅ -20	PNAM25-b-PNAT100	70	25	0.2	19.5	16.1	1.30	Р	Р	Р

Table S1. Overview of the synthesized polymers and micelles including abbreviations,polymerization conditions and properties.

Exp.	Polymer	Т [°С]	vol% _{Diox} [%]	с [M]	${ m M_n}^{[a]}$ [kg mol ⁻¹]	Mn ^[b] [kg mol ⁻¹]	$\mathbf{\hat{D}}^{[b]}$	D _H [nm]	PDI ^[c]	Morph. ^[d]
PNAM ₂₅ - <i>b</i> -PNAT _n - 90°C										
P ₂₅ -21*				0.2		7.5	1.13	44	0.06	S
P ₂₅ -22*		90	0	0.6	7.7	7.4	1.13	109	0.16	V
P ₂₅ -23*				1		7.6	1.12	569	0.67	L
P ₂₅ -24	-		25	0.2		7.4	1.10	124	0.07	bW/V/ L
P ₂₅ -25	PNAM ₂₅ - <i>b</i> -PNAT ₂₅			0.6		7.5	1.10	-	-	bW / L
P ₂₅ -26				1		7.5	1.11	-	-	bW / L
P ₂₅ -27	-			0.2		7.1	1.14	220	0.18	bW/V/L
P ₂₅ -28				0.6		7.4	1.10	-	-	bW / L
P ₂₅ -29				1		7.6	1.10	-	-	bW / L
P ₂₅ -30				0.2	11.6	11.2	1.29	44	0.05	S / sW
P ₂₅ -31		90	0	0.6		11.6	1.32	Р	Р	Р
P ₂₅ -32	PNAM ₂₅ - <i>D</i> -PNA1 ₅₀			1		11.0	1.30	Р	Р	Р
P ₂₅ -33	-		10	0.2		11.2	1.16	Р	Р	Р
P ₂₅ -34	PNAM25-b-PNAT70	90	0	0.2	14.8	14.0	1.49	111	0.14	S / sW
			PN	AM50-	<i>b</i> -PNAT _n					
P50-1		70		0.2	12.0	11.6	1.09	22	0.11	S
P50-2	PNAM50-b-PNAT30		0	0.6		11.5	1.09	20	0.16	S
P50-3				1		11.6	1.09	28	0.13	S
P50-4		50		0.2	15.2	13.5	1.32	29	0.09	-
P50-5	-	90	0	0.2		13.3	1.15	66	0.20	-
P50-6	PNAM ₅₀ - <i>b</i> -PNAT ₅₀			0.2		14.3	1.22	57	0.13	S / sW
P ₅₀ -7		70		0.6		14.2	1.24	50	0.18	S / sW
P50-8				1		14.1	1.23	36	0.19	S / sW
P50-9	- PNAM50- <i>b</i> -PNAT50	70 -	10	0.2	15.2	13.7	1.13	30	0.06	-
P ₅₀ -10				0.6		14.2	1.13	26	0.12	-
P50-11				1		14.4	1.13	23	0.14	S
P50-12				0.2		13.6	1.09	28	0.07	S
P ₅₀ -13			25	0.6		13.9	1.09	26	0.08	-
P50-14				1		13.8	1.09	24	0.10	S

Exp.	Polymer	Т [°С]	vol% _{Diox} [%]	с [M]	${ m M_n}^{[a]}$ [kg mol ⁻¹]	M n ^[b] [kg mol ⁻¹]	$\mathbf{\hat{P}}^{[b]}$	D _H [nm]	PDI ^[c]	Morph. ^[d]
P ₅₀ -15	-	70 -	0	0.2	23.0	20.1	1.70	Р	Р	Р
P ₅₀ -16			10	0.2		19.4	1.32	60	0.09	S / sW
P ₅₀ -17				0.6		19.6	1.35	55	0.10	S / sW
P ₅₀ -18	PNAM ₅₀ - <i>b</i> -PNAT ₁₀₀			1		20.2	1.33	54	0.09	S / sW
P ₅₀ -19	-			0.2		19.0	1.16	40	0.04	S
P50-20			25	0.6		19.7	1.16	40	0.05	S
P50-21				1		19.7	1.16	44	0.04	S
P50-22	PNAM50-b-PNAT200		25	0.2	38.7	24.7	1.35	55	0.02	S
PNAM ₁₀₀ - <i>b</i> -PNAT _n										
P ₁₀₀ -1				0.2	22.2	19.5	1.17	29	0.08	S
P100-2		70	0	0.6		19.4	1.17	29	0.10	S
P100-3				1		19.1	1.16	28	0.13	S
P100-4	-			0.2		19.6	1.11	29	0.07	-
P100-5	PNAM100-b-PNAT50		10	0.6		19.5	1.12	30	0.10	-
P100-6				1		19.4	1.12	35	0.09	S
P ₁₀₀ -7	-			0.2		18.9	1.10	28	0.09	-
P ₁₀₀ -8			25	0.6		19.5	1.10	32	0.08	-
P ₁₀₀ -9				1		19.2	1.10	36	0.07	S
P100-10	-	70	0	0.2	30.1	25.2	1.43	63	0.10	S / sW
P100-11				0.2		24.1	1.28	40	0.06	S
P100-12			10	0.6		24.0	1.29	37	0.09	S
P100-13	PNAM100-b-PNAT100			1		24.8	1.27	40	0.08	S
P ₁₀₀ -14	-			0.2		23.7	1.18	36	0.03	-
P ₁₀₀ -15			25	0.6		24.3	1.18	37	0.06	S
P ₁₀₀ -16				1		24.8	1.18	47	0.18	S
PNAT ₁₅	PNAT	70		2	2.6	2.7	1.11	-	-	-
PNAT ₃₀					5.0	4.7	1.10	-	-	-
PNAT50			83		8.1	7.3	1.08	-	-	-
PNAT ₁₀₀					16.0	13.4	1.11	-	-	-

[a] Calculated based on $[M]_0/[CTA]_0 \times$ monomer conversion. [b] Determined by SEC (Eluent: DMAc + 0.21 wt% LiCl, PS-calibration) [c] Determined by DLS measurements of the purified structures (c: 1 mg mL⁻¹). [d] Morphology judgement based on (cryo)-TEM investigations. The morphologies were categorized as follows: spheres (**S**), short worms (**s**W), worms (**W**), vesicles (**V**), lamellae (**L**), and precipitation (**P**). Exp.: experiment, T: reaction temperature, c: monomer concentration, Morph.: morphology. *Samples were previously reported.¹

Figure S1. NMR overlay of the RAFT dispersion polymerization of NAT using PNAM₁₀₀ as mCTA (70 °C, 0.2 M, 25 vol% 1,4 dioxane, P_{100} -7); 1,3,5-trioxane was used as internal standard.

Figure S2. Overview of the SEC curves of the synthesized polymers. (Eluent: DMAc + 0.21% LiCl, PS-calibration).

Figure S3. A) Semilogarithmic plot of the monomer conversion and the derived count rate vs. reaction time of the PISA of PNAM₂₅-*b*-PNAT₇₀ for 0 and 25 vol% 1,4-dioxane at 70 °C and 0.2 M. B) Dependency of the T_g of PNAT homopolymers on the DP, determined by DSC measurements.

Figure S4. Overview of intensity weight size distributions of the prepared micelles determined by DLS (1 mg mL⁻¹ in H₂O).

Figure S5. Exemplary dry-TEM images of PNAM₂₅-*b*-PNAT₂₅ micelles after dialysis. A) Prepared with 0 vol% 1,4-dioxane at 0.2 M and 70 °C. B) Prepared with 0 vol% 1,4-dioxane at 0.6 M and 70 °C.

Figure S6. Exemplary TEM images of PNAM₂₅-*b*-PNAT₂₅ micelles after dialysis. A) Cryo-TEM, prepared with 0 vol% 1,4-dioxane at 1.0 M and 70 °C. B) Dry-TEM, prepared with 10 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S7. Exemplary TEM images of PNAM₂₅-*b*-PNAT₂₅ micelles after dialysis. A) Cryo-TEM, prepared with 10 vol% 1,4-dioxane at 0.6 M and 70 °C. B) Dry-TEM, prepared with 10 vol% 1,4-dioxane at 0.6 M and 70 °C.

Figure S8. Exemplary dry-TEM images of PNAM₂₅-*b*-PNAT₂₅ micelles after dialysis, prepared with 25 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S9. Exemplary TEM images of PNAM₂₅-*b*-PNAT₂₅ micelles after dialysis. A) Cryo-TEM, prepared with 25 vol% 1,4-dioxane at 0.6 M and 70 °C. B) Dry-TEM, prepared with 25 vol% 1,4-dioxane at 0.6 M and 70 °C.

Figure S10. Exemplary TEM images of micelles after dialysis. A) Dry-TEM of PNAM₂₅-*b*-PNAT₅₀ prepared with 10 vol% 1,4-dioxane at 0.2 M and 70 °C. B) Cryo-TEM of PNAM₂₅-*b*-PNAT₅₀ prepared with 25 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S11. Exemplary dry-TEM images of micelles after dialysis. A) PNAM₂₅-*b*-PNAT₆₀, prepared with 10 vol% 1,4-dioxane at 0.2 M and 70 °C. B) PNAM₂₅-*b*-PNAT₇₀ prepared with 10 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S12. Exemplary TEM images of micelles after dialysis. A) Cryo-TEM of PNAM₂₅-*b*-PNAT₇₀ prepared with 25 vol% 1,4-dioxane at 0.2 M and 70 °C. B) Dry-TEM of of PNAM₂₅-*b*-PNAT₂₅ prepared with 0 vol% 1,4-dioxane at 0.2 M and 90 °C.

Figure S13. Exemplary TEM images of micelles after dialysis. A) Cryo-TEM of PNAM₂₅-*b*-PNAT₂₅ prepared with 0 vol% 1,4-dioxane at 0.6 M and 90 °C. B) Dry-TEM of PNAM₂₅-*b*-PNAT₂₅ prepared with 0 vol% 1,4-dioxane at 1.0 M and 90 °C.

Figure S14. Exemplary TEM images of PNAM₂₅-*b*-PNAT₂₅ micelles after dialysis. A) Cryo-TEM prepared with 10 vol% 1,4-dioxane at 0.2 M and 90 °C. B) Cryo-TEM prepared with 25 vol% 1,4-dioxane at 0.2 M and 90 °C.

Figure S15. Exemplary TEM images of the micelles after dialysis. A) Dry-TEM of PNAM₂₅*b*-PNAT₂₅ Prepared with 25 vol% 1,4-dioxane at 1.0 M and 90 °C (the inset shows a corresponding photograph of the reaction solution). B) Dry-TEM of PNAM₂₅-*b*-PNAT₅₀ prepared with 0 vol% 1,4-dioxane at 0.2 M and 90 °C.

Figure S16. Exemplary TEM images of micelles after dialysis. A) Dry-TEM of PNAM₂₅-*b*-PNAT₇₀ prepared with 0 vol% 1,4-dioxane at 1.0 M and 90 °C. B) Dry-TEM of PNAM₅₀-*b*-PNAT₃₀ prepared with 0 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S17. Exemplary dry-TEM images of micelles after dialysis. A) PNAM₅₀-*b*-PNAT₃₀ prepared with 0 vol% 1,4-dioxane at 0.6 M and 70 °C. B) PNAM₅₀-*b*-PNAT₃₀ prepared with 0 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S18. Exemplary dry-TEM images of micelles after dialysis. A) PNAM₅₀-*b*-PNAT₅₀ prepared with 0 vol% 1,4-dioxane at 0.2 M and 70 °C. B) PNAM₅₀-*b*-PNAT₅₀ prepared with 0 vol% 1,4-dioxane at 0.6 M and 70 °C.

Figure S19. Exemplary dry-TEM images of PNAM₅₀-*b*-PNAT₅₀ micelles after dialysis. A) Prepared with 0 vol% 1,4-dioxane at 1.0 M and 70 °C. B) Prepared with 10 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S20. Exemplary dry-TEM images of PNAM₅₀-*b*-PNAT₅₀ micelles after dialysis. A) Prepared with 25 vol% 1,4-dioxane at 0.2 M and 70 °C. B) Prepared with 25 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S21. Exemplary dry-TEM images of micelles after dialysis. A) PNAM₅₀-*b*-PNAT₁₀₀ prepared with 0 % 1,4-dioxane at 1.0 M and 70 °C. B) PNAM₅₀-*b*-PNAT₁₀₀ prepared with 10 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S22. Exemplary dry-TEM images of micelles after dialysis. A) PNAM₅₀-*b*-PNAT₁₀₀ prepared with 10 vol% 1,4-dioxane at 0.6 M and 70 °C. B) PNAM₅₀-*b*-PNAT₁₀₀ prepared with 10 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S23. Exemplary dry-TEM images of PNAM₅₀-*b*-PNAT₁₀₀ micelles after dialysis. A) Prepared with 25 vol% 1,4-dioxane at 0.2 M and 70 °C. B) Prepared with 25 vol% 1,4-dioxane at 0.6 M and 70 °C.

Figure S24. Exemplary TEM images of PNAM₅₀-*b*-PNAT₁₀₀ micelles after dialysis. A) Dry-TEM, prepared with 25 vol% 1,4-dioxane at 1.0 M and 70 °C. B) Cryo-TEM, prepared with 25 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S25. Exemplary dry-TEM images of micelles after dialysis. A) Dry-TEM of PNAM₅₀*b*-PNAT₂₀₀ prepared with 25 vol% 1,4-dioxane at 0.2 M and 70 °C. B) Dry-TEM of PNAM₁₀₀*b*-PNAT₅₀ prepared with 0 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S26. Exemplary TEM images of PNAM₁₀₀-*b*-PNAT₅₀ micelles after dialysis. A) Dry-TEM, prepared with 0 vol% 1,4-dioxane at 0.6 M and 70 °C. B) Dry-TEM, prepared with 0 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S27. Exemplary dry-TEM images of micelles after dialysis. A) PNAM₁₀₀-*b*-PNAT₅₀ prepared with 10 vol% 1,4-dioxane at 1.0 M and 70 °C. B) PNAM₁₀₀-*b*-PNAT₅₀ prepared with 25 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S28. Exemplary dry-TEM images of the $PNAM_{100}$ -*b*- $PNAT_{100}$ micelles after dialysis. A) Prepared with 0 vol% 1,4-dioxane at 0.2 M and 70 °C. B) Prepared with 10 vol% 1,4-dioxane at 0.2 M and 70 °C.

Figure S29. Exemplary dry-TEM images of PNAM₁₀₀-*b*-PNAT₁₀₀ micelles after dialysis. A) Prepared with 10 vol% 1,4-dioxane at 0.6 M and 70 °C. B) Prepared with 10 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S30. Exemplary dry-TEM images of PNAM₁₀₀-*b*-PNAT₁₀₀ micelles after dialysis. A) Prepared with 25 vol% 1,4-dioxane at 0.6 M and 70 °C. B) Prepared with 25 vol% 1,4-dioxane at 1.0 M and 70 °C.

Figure S31. Exemplary cryo-TEM images of intermediate structures. A) Partially coalesced worms 'octopi-like', P₂₅-24. B) Half-closed vesicles, also called 'jellyfish', P₂₅-27.

Figure S32. Exemplary dry-TEM images of $PNAM_{25}$ -*b*- $PNAT_{25}$ nanostructures after dialysis. A) Prepared with 10 vol% 1,4-dioxane at 0.6 M and 90 °C. B) Prepared with 10 vol% 1,4-dioxane at 1.0 M and 90 °C.

Figure S33. Exemplary dry-TEM images of PNAM₂₅-*b*-PNAT₂₅ nanostructures after dialysis, prepared with 25 vol% 1,4-dioxane at 0.6 M and 90 °C.

Figure S34. Comparison of the glass transition determined by DSC of pure PNAT₅₀ and PNAT₅₀ swelled in 1,4-dioxane.

Figure S35. DSC analysis of aqueous polymer suspension with varying 1,4-dioxane content. A) Overlay of heating cycles of aqueous suspensions of PNAT₅₀ polymers (50 μ L, 50 mg mL⁻¹). B) 1st derivative of the heat flow vs. temperature of aqueous suspensions of PNAT₅₀ polymers (50 μ L, 50 mg mL⁻¹). C) Overlay of heating cycles of aqueous suspensions of

PNAM₅₀-*b*-NAT₅₀ micelles (50 μ L, 200 mg mL⁻¹). D) 1st derivative of the heat flow vs. temperature of aqueous suspensions of PNAM₅₀-*b*-NAT₅₀ micelles (50 μ L, 200 mg mL⁻¹).

Figure S36. Size distribution of the core diameter determined by graphical analysis of ≥ 100 micelles in TEM images. A) Histogram of sample P₅₀-1. B) Histogram of sample P₅₀-12. C) Histogram of sample P₅₀-19. D) Histogram of sample P₅₀-22.

[1] F. H. Sobotta, M. Kuchenbrod, S. Hoeppener and J. C. Brendel, *Nanoscale*, **2020**, *12*, 20171-20176.