Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information for *Polymer Chemistry* article:

Tuning the Vesicle-to-Worm Transition for Thermoresponsive Block Copolymer Vesicles Prepared via Polymerisation-Induced Self-Assembly

Isabella R. Dorsman, Matthew J. Derry, Victoria J. Cunningham,

Steven L. Brown, Clive N. Williams and Steven P. Armes*

Fig. S1 THF GPC traces recorded for PSMA₁₃-PBzMA₉₇ diblock copolymer chains and the corresponding PSMA₁₃ macro-CTA precursor.

Fig. S2 (a) BzMA monomer conversion vs. time curve (blue circles) and BuMA monomer conversion vs. time curve (red triangles). (b) Overall comonomer conversion vs. time curve (blue circles) and corresponding $\ln[[M]_0/[M]]$ vs. time (red triangles) plot. (c) Evolution in M_n (blue circles) and M_w/M_n (red triangles) with comonomer conversion during the synthesis of PSMA₁₄-P(0.5BzMA-stat-0.5BuMA)₁₃₀ nanoparticles via RAFT dispersion copolymerization of BzMA with BuMA at 90 °C when targeting 10% w/w solids in mineral oil. The theoretical M_n vs. overall comonomer conversion relationship is indicated by the black solid line for this series, with the difference being attributed to the systematic error incurred by using a series of poly(methyl methacrylate) calibration standards.

Fig. S3 Assigned ¹H NMR spectrum (recorded in CDCl₃) obtained for the reaction mixture directly after the synthesis of PSMA₁₄-P(0.5BzMA-*stat*-0.5BuMA)₁₃₀ nano-objects via RAFT dispersion copolymerization of BzMA with BuMA at 90 °C when targeting 10% w/w solids in mineral oil. [N.B. The nano-objects formed in mineral oil become molecularly dissolved in the presence of CDCl₃].

Fig. S4 ¹H NMR spectra showing the relative proportions of BuMA and BzMA repeat units within the structure-directing insoluble block for $PSMA_{14}$ -P[(1-X)BzMA-*stat*-XBuMA]₁₃₀ nanoparticles for a target mole fraction, X, of 0.30 (blue trace), 0.40 (red trace) and 0.50 (green trace). The broad integral at 3.8 – 4.0 ppm corresponds to the two oxymethylene protons assigned to the BuMA repeat units and the integral at 4.8 – 5.1 ppm corresponds to the two oxymethylene protons of the BzMA repeat units (see **Fig. S3** for the fully assigned ¹H NMR spectrum).

Fig. S5 Representative TEM images recorded at 20 °C for (a) $PSMA_{14}$ -P(0.5BzMA-*stat*-0.5BuMA)₁₃₀ vesicles (plus a minor worm population), (b) a mixed phase comprising $PSMA_{14}$ -P(0.4BzMA-*stat*-0.6BuMA)₁₃₀ vesicles and worms, (c) $PSMA_{14}$ -P(0.3BzMA-*stat*-0.7BuMA)₁₃₀ worms and (d) $PSMA_{14}$ -P(0.8BzMA-*stat*-0.2BuMA)₁₃₀ spheres.

Fig. S6 Representative TEM images recorded at 20 °C for (a) PSMA₁₄-PBzMA₁₃₀ vesicles and (b) PSMA₁₄-PBzMA₁₂₅ vesicles. Particle size distributions and z-average diameters obtained by DLS for a 0.10% w/w dispersion of (c) PSMA₁₄-PBzMA₁₃₀ vesicles and (d) PSMA₁₄-PBzMA₁₂₅ vesicles. (e) Temperature dependence of the complex viscosity (η^*) observed for PSMA₁₄-PBzMA₁₃₀ nano-objects (red circles) and PSMA₁₄-PBzMA₁₃₀ nano-objects (blue triangles) on heating from 20 °C to 180 °C at 2°C min⁻¹. Data were obtained at 1.0 % strain using an angular frequency of 10 rad s⁻¹.

Fig. S7 THF GPC analysis of PSMA₁₄-P(0.5BzMA-*stat*-0.5BuMA)₁₃₀ chains before (blue traces) and after (red traces) subjecting a 10% w/w dispersion of such diblock copolymer nano-objects in mineral oil to a 20-180-20 °C thermal cycle in a rheology experiment. (a) Refractive index (RI) detector data with the PSMA₁₄ precursor included as a reference. (b) UV detector data at a fixed wavelength λ of 302 nm.

of the complex Fig. **S8** Temperature dependence viscosity (η*) observed for PSMA₁₄-P(0.5BzMA-stat-0.5BuMA)₁₃₀ nano-objects on heating from 20 °C to 160 °C. Red circles indicate data obtained for an 'as-synthesized' 10% w/w dispersion of PSMA₁₄-P(0.5BzMA-stat-0.5BuMA)₁₃₀ nano-objects prepared in mineral oil, (92% BuMA conversion, as determined by ¹H NMR spectroscopy). Blue squares indicate data obtained for an equivalent 10% w/w dispersion of PSMA₁₄-P(0.5BzMA-stat-0.5BuMA)₁₃₀ with post-polymerization addition of the equivalent of 8% residual BuMA (thus doubling the mass of residual BuMA comonomer that is present). Clearly, addition of further BuMA comonomer has minimal effect on the observed behavior.

Fig. S9 (a) Temperature dependence of the storage modulus (*G'*, red filled squares) and loss modulus (*G''*, red empty squares) observed for a 10% w/w dispersion of PSMA₁₄-P(0.5BzMA-*stat*-0.5BuMA)₁₃₀ nano-objects in mineral oil when heating from 20 to 180 °C at 2 °C min⁻¹. The storage and loss moduli were also recorded on cooling the this dispersion from 180 °C to 20 °C at 2 °C min⁻¹ (*G'* = blue filled circles and *G''* = blue empty circles). This experiment was conducted at 1.0% strain and a constant angular frequency of 10 rad s⁻¹. Representative TEM images recorded after drying 0.10% w/w dispersions of PSMA₁₄-P(0.5BzMA-*stat*-0.5BuMA)₁₃₀ nano-objects at 20 °C (b) before and (c) after this 20-180-20 °C thermal cycle.

Fig. S10 Representative SAXS patterns recorded for PSMA₁₄-P(0.5BzMA-*stat*-0.5BuMA)₁₃₀ nanoobjects at 20 °C, 130 °C and 150 °C, with dashed lines indicating the data fits obtained using the relevant scattering model (as shown in Fig. 9). The patterns recorded at 180 °C and 200 °C could not be satisfactorily fitted using any of the scattering models presented herein.