Supporting Information

Precision Ethylene-Styrene Copolymers through the Ring Opening

Metathesis Polymerization of 3-Phenyl Cyclododecenes

Sebla Onbulak and Marc A. Hillmyer*

Department of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431

*Corresponding author (e-mail: <u>hillmyer@umn.edu</u>)

Table of Contents

¹ H NMR characterization of <i>E</i> , <i>Z</i> -3PhCDE and <i>E</i> , <i>Z</i> -3BrCDE	S2
Synthesis of Z-3PhCDE	S3
¹ H NMR characterization of <i>Z</i> -3PhCDE and <i>E</i> , <i>Z</i> -3PhCDE	S3
Synthesis of poly(CDE) and poly(3PhCOE) model compounds	S4
¹ H NMR and ¹³ C NMR spectra of poly(CDE) hh model compound	S4
¹³ C NMR spectrum of poly(3PhCOE) ht model compound	S5
¹ H NMR characterization of polymer P1 and P13 (olefinic region)	S5
¹ H NMR monitoring during ROMP of CDE with CTA	S6
Formation of first initiating species in ROMP with/without CTA	S6
¹ H NMR spectra comparison of ROMP of 3PhCDE with two different CTAs	S 7
¹ H NMR characterization of change in the error with molar mass	S7
¹ H NMR spectra of P3 before and after hydrogenation	S 8
¹³ C NMR spectra of poly(3PhCOE) model compound vs poly(3PhCDE)	S 8
¹³ C NMR spectra of P3 before and after hydrogenation	S9
¹³ C NMR and ¹ H NMR spectra of hydrogenated HP3 vs HP13	S10
Pseudo first-order kinetic plot of the ROMP of 3PhCDE.	S11
SEC characterization curves and data for selected poly(3PhCDE) polymers	S12

Figure S1. ¹H NMR spectra of E,Z-3-phenyl-1-cyclododecene (top) and E,Z-3-bromo-1-cyclododecene in CDCl₃.

Figure S2. Synthesis of Z-3-Phenyl-1-cyclododecene.

Figure S3. ¹H NMR spectra of E,Z-3-phenyl-1-cyclododecene (top) and Z-3-phenyl-1-cyclododecene (bottom) in CDCl₃.

Figure S4. Synthesis of poly(CDE) and poly(3PhCOE) polymers by ROMP for hh and ht regioisomer assignments by ¹³C NMR spectroscopy.

Figure S5. ¹H NMR and ¹³C NMR spectrum of poly(CDE) polymer in CDCl₃

Figure S6. ¹³C NMR spectrum of poly(3PhCOE) polymer in CDCl₃.

Figure S7. Partial ¹H NMR spectra of the (A) polymer **P1** with the CTA present, and (B) polymer **P13** without the CTA in CDCl₃.

Figure S8. Partial ¹H NMR spectra of (A) ROMP reaction after 15 h, (B) ROMP reaction after 20 min, (C) PhCDE monomer and (D) *cis*-4-octene CTA in CDCl₃. The equivalences that were used for the ROMP reaction of monomer:CTA:G2 was 1:1:1.

Figure S9. The first initiating species that are formed with and without the CTA present in the ROMP reaction mixture. The equivalences that were used for the ROMP reaction of monomer:CTA:G2 was 1:1:1.

Figure S10. Partial ¹H NMR spectra of low molar mass polymer synthesized with cis-4-octene CTA (top) and with carboxybenzyl CTA (bottom) in CDCl₃. The hh error dropped from 31% to 12% with the change in the CTA.

S7

Figure S11. The change in the error with the change in the molar mass of the polymer. Partial ¹H NMR spectra of **P12**, **P1** and **P7** polymers synthesized with cis-4-octene CTA in CDCl₃.

Figure S12 ¹H NMR spectra of (A) 3PhCDE monomer, (B) poly(3PhCDE) polymer, and (C) hydrogenated poly(3PhCDE) polymer in CDCl₃.

Figure S13. Difference in the ¹³C NMR spectra of unsaturated poly(3PhCOE) model compound (bottom) vs poly(3PhCDE) (top).

Figure S14. Partial ¹³C NMR spectra and isomer assignment of P3 before (top) and after hydrogenation (bottom).

Figure S15. Partial ¹H NMR (top) and ¹³C NMR (bottom) spectra of the (A) polymer **HP13** with low regioregularity, and (B) polymer **HP3** with high regioregularity in CDCl₃.

The nonlinearity of the pseudo first-order kinetic plot may be due to slow initiation at early times where an increase in the rate of conversion was observed.

Figure S16. Pseudo first-order kinetic plot of the ROMP of 3PhCDE. The data was taken from the solution polymerization of 3PhCDE with G2 catalyst at 40 °C for 15 h. Initial monomer concentration was 4M, whereas the catalyst concentration was 0.05 mol%.

Figure S17. SEC characterization curves and data for selected poly(3PhCDE) polymers. All polymerizations were carried using 0.05 mol% G2 catalyst and *cis*-4-octene as a chain transfer agent (CTA). SEC characterization data was determined based on chloroform SEC, PS standards.