Supplementary Information

for

Structure and Activity Relationship Studies of *N*-Heterocyclic Olefins and Thioureas/Ureas Catalytic System: Application in Ring-opening Polymerization of Lactones

Li Zhou ‡^a, Zhenyu Wang ‡^a, Guangqiang Xu *^{a,b}, Chengdong Lv ^{a,b}, Qinggang Wang *^{a,b}

^a Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China. E-mail: wangqg@qibebt.ac.cn.

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.

Table of Contents

1.	General Experimental Procedure	3			
	Preparation of NHOs	3			
	Preparation of TUs/Us	3			
2.	p <i>K</i> _a determination of NHOs	4			
	Figure S1. ¹ H NMR of NHOs and BnOH	5			
	Figure S2. ¹ H NMR of NHO5 precursor salt, 'Bu-P ₁ and combinations	5			
	Figure S3. ¹ H NMR of NHO5 precursor salt, 'Bu-P ₂ and combinations	6			
	Figure S4. ¹ H NMR of NHO1 precursor salt, DBU and combinations	6			
	Figure S5. ¹ H NMR of NHO1, TU5 and combinations	7			
	Figure S6. ¹ H NMR of NHO2, TU5 and combinations	7			
	Figure S7. ¹ H NMR of NHO3, U8 and combinations	8			
	Figure S8. ¹ H NMR of NHO3 and U6	8			
	Figure S9. ¹ H NMR of NHO3, U5 and combinations	9			
	Figure S10. ¹ H NMR of NHO3 and U5	9			
3.	¹ H NMR Spectra				
	Figure S11. Homonuclear decoupled ¹ H NMR	10			
	Figure S12. Homonuclear decoupled ¹ H NMR	11			
	Figure S13. Homonuclear decoupled ¹ H NMR	11			
	Figure S14. Homonuclear decoupled ¹ H NMR	12			
	Figure S15. ¹ H NMR spectra of the obtained PVL	12			
	Figure S16. ¹ H NMR spectra of the obtained PCL				
	Figure S17. ¹ H NMR spectra of the obtained PLA				
4.	GPC curves of various polymer	14			
	Figure S18. GPC curves of the obtained PVL	14			
	Figure S19. GPC curves of the obtained PCL	14			
	Figure S20. GPC curves of the obtained PLA at room temperature	14			
	Figure S21. GPC curves of the obtained PLA at low temperature	15			
	Figure S22. GPC curves of the obtained PVL				
	Figure S23. GPC curves of the obtained PVL	15			

5.	Experimental data	15
	Table S1. k_{obs} for δ -VL ROP with NHO3 and different TUs (Us)	16
	Table S2. ROPs of δ -VL with various ratios of monomer/initiator	16
	Table S3. The results of monomer conversion and molecular weight versus time	17
6.	MALDI-TOF MS spectrum	17
	Figure S24. MALDI-TOF MS spectrum of the obtained PCL sample	17
Ref	erences	18

1. General Experimental Procedure

Preparation of NHOs

The depicted *N*-Heterocyclic Olefins (NHOs) have been synthesized according to literature-known procedures. NHOs was synthesized by deprotonation of the corresponding precursor salt (Scheme S1) using KHMDS and they were stored in a glove box at -25 °C. For full characterization of NHO1, NHO2, NHO3, NHO4 and NHO5 see the cited literature.¹⁻⁵

Scheme S1. Synthetic routes for the NHOs employed in this study.

Preparation of TUs/Us

The depicted thioureas (TUs) and ureas (Us) are prepared by mixing the appropriate amine and isothiocyanate in a solution of MeOH (Scheme S2). The solution was stirred in the room temperature for 30 min. Then MeOH is removed under vacuum and the products were purified by washing with hexanes three times. After vacuum filtration, the filter residue was vacuum drying at 50 °C for 24 h. For full characterization of TU1, TU2, TU3, TU4, TU5, TU6, U1, U2 and U8 see the cited literature.⁶⁻¹⁰ U3, U4, U5, U6 and U7 were purchased from commercial suppliers and dried under vacuum at 50 °C for 24 hours.

Scheme S2. Synthetic routes for the TUs/Us.

2. pK_a determination of NHOs

When NHOs and BnOH were mixed together, the methylene group of BnOH shifted downfield. The stronger the basicity of NHOs, the greater the chemical shift of the methylene group of BnOH.

Figure S1. ¹H NMR (d_8 -Toluene, 400 MHz) of NHOs and BnOH (NHOs:BnOH =1:1).

4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0 chemical shift (ppm)

Figure S2. ¹H NMR (d_3 -MeCN, 400 MHz) of NHO5 precursor salt, 'Bu-P₁ and combinations (NHO5 precursor salt: 'Bu-P₁ =2:1).

The NMR signal of the "d" methyne group remained unchanged when 'Bu-P₁ ($pK_a = 26.9$) was

used to deprotonate the NHO5 precursor salt, which proves that NHO5 exhibits a higher pK_a than 'Bu-P₁ ($pK_a[NHO5] > 26.9$).

Figure S3. ¹H NMR (d_3 -MeCN, 400 MHz) of NHO5 precursor salt, 'Bu-P₂ and combinations (NHO5 precursor salt: 'Bu-P₂ =2:1).

The signal of the "d" methyne group disappeared when the 'Bu-P₂ ($pK_a = 33.5$) base was used for the deprotonation of NHO5 precursor salt, which proves that 'Bu-P₂ exhibits a higher pK_a than NHO5 ($pK_a[NHO5] < 33.5$).

Figure S4. ¹H NMR (d_3 -MeCN, 400 MHz) of NHO1 precursor salt, DBU and combinations (NHO1 precursor salt: DBU =2:1).

The NMR signal of the "a" methyl group remained unchanged when DBU ($pK_a = 24.3$) was used to deprotonate the NHO1 precursor salt, which proves that NHO1 exhibits a higher pK_a than DBU ($pK_a[NHO1] > 24.3$).

Figure S5. ¹H NMR (C₆D₆, 400 MHz) of NHO1, TU5 and combinations (NHO1:TU5=1:1).

Figure S6. ¹H NMR (C₆D₆, 400 MHz) of NHO2, TU5 and combinations (NHO2:TU5=1:1).

Figure S7.¹H NMR (*d*₈-THF, 400 MHz) of NHO3, U8 and combinations (NHO3:U8=1:1).

Figure S8. ¹H NMR (C₆D₆, 400 MHz) of NHO3 and U6 (NHO3:U6=1:1).

Figure S9. ¹H NMR (C₆D₆, 400 MHz) of NHO3, U5 and combinations (NHO3:U5=1:1).

Figure S10. ¹H NMR (C₆D₆, 400 MHz) of NHO3 and U5 (NHO3:U5=1:1).

3. ¹H NMR Spectra

For homonuclear decoupled ¹H NMR analysis, acquisition time was measured and fixed to 2.04 s. Samples were obtained in CDCl₃ solutions with the decoupling pulse

based on the methyl region ($\delta = 1.5$ ppm). In case of the good separation of methine region ($\delta = 5.00-5.20$ ppm), both Bernouillan statistics (chain-end control mechanism, CEC) and non-Bernouillan statistics (enantiomorphic site control mechanism, ESC) were used to calculate $P_{\rm m}$ values.¹¹

	Probability of ESC (non-Bernouillan)	Probability of CEC (Bernouillan)	
[mmm]	$[P_{\rm m}^2 + (1 - P_{\rm m})^2 + P_{\rm m}^3 + (1 - P_{\rm m})^3]/2$	$P_{\rm m}^2$ +0.5 $P_{\rm m}P_{\rm r}$	
[rmm]	$[P_{\rm m}^2(1-P_{\rm m}) + P_{\rm m}(1-P_{\rm m})^2]/2$	$0.5 P_{\rm m}P_{\rm r}$	
[mmr]	$[P_{\rm m}^2(1-P_{\rm m}) + P_{\rm m}(1-P_{\rm m})^2]/2$	$0.5 P_{\rm m}P_{\rm r}$	
[rmr]	$[P_{\rm m}^2(1-P_{\rm m}) + P_{\rm m}(1-P_{\rm m})^2]/2$	$0.5 P_{\rm r}^2$	
[mrm]	$[P_{\rm m}(1-P_{\rm m})]$	$0.5 (P_{\rm m}^2 + P_{\rm m}P_{\rm r})$	

 $P_{\rm r}$ has meaning of racemic enchainment, and $P_{\rm m}+P_{\rm r}=1$.

Figure S11. Homonuclear decoupled ¹H NMR (Table 4, entry 1).

Figure S12. Homonuclear decoupled ¹H NMR (Table 4, entry 3).

Figure S13. Homonuclear decoupled ¹H NMR (Table 4, entry 4).

Figure S14. Homonuclear decoupled ¹H NMR (Table 4, entry 6).

Figure S15. ¹H NMR (CDCl₃, 400 MHz) spectra of the obtained PVL.

Figure S16. ¹H NMR (CDCl₃, 400 MHz) spectra of the obtained PCL.

Figure S17. ¹H NMR (CDCl₃, 400 MHz) spectra of the obtained PLA.

4. GPC curves of various polymer

Figure S18. GPC curves of the obtained PVL (Table 1).

Figure S19. GPC curves of the obtained PCL (Table 2).

Figure S20. GPC curves of the obtained PLA at room temperature (Table 3).

Figure S21. GPC curves of the obtained PLA at low temperature (Table 4).

Figure S22. GPC curves of the obtained PVL (Table 5, entries 2-5).

Figure S23. GPC curves of the obtained PVL (Table 5, entries 7-10).

5. Experimental data

TUs/Us	k _{obs} (min ⁻¹)
TU1	$7.1*10^{-6} \pm 2.1*10^{-8}$
TU2	$7.2*10^{-6} \pm 3.2*10^{-8}$
TU3	$0.00072 \pm 2.4*10^{-5}$
TU4	$0.0016 \pm 6.4*10^{-5}$
TU5	$0.0034 \pm 9.5*10^{-5}$
U1	0.148 ± 0.0031
U2	0.064 ± 0.0018
U3	0.138 ± 0.0013
TU6	0.322 ± 0.013
U4	0.537 ± 0.019
U5	$0.0055 \pm 2.3*10^{-4}$
U6	$0.0014 \pm 6.1*10^{-5}$
U7	$0.0013 \pm 6.5*10^{-5}$
U8	$0.00082 \pm 3.3^{*}10^{-5}$

Table S1. k_{obs} for $\delta\text{-VL}$ ROP with NHO3 and different TUs (Us) a

 $\label{eq:aReaction conditions: [NHO3]_0: [TU/U]_0: [BnOH]_0: [VL]_0 = 1:2:2:800 \mbox{ in toluene at room temperature, } [VL]_0 = 3.4 \mbox{ mol/L}.$

Table S2. ROPs of δ -VL with various ratios of monomer/initiator ^a

Entry	NHO3/U1/BnOH/δ-VL	Time	Conv. ^b	$M_{ m n,cal}$ (g/mol)	$M_{\rm n,exp}({ m g/mol})^{ m c}$	а
1	1/2/2/100	30 s	95 %	4800	5400	1.14
2	1/2/2/200	5 min	98 %	9800	12200	1.15
3	1/2/2/400	10 min	94 %	18800	19500	1.16
4	1/2/2/800	30 min	96 %	38400	34300	1.22

^a Polymerization conditions: room temperature, toluene as solvent, the reactions were carried in sealed tube. ^b Determined by ¹H NMR in CDCl₃ using integrals of the characteristic signals. ^c Number-average molar mass (M_n) and dispersity values were determined by GPC in THF at 25 °C using polystyrene standards for calibration, and corrected using the factor 0.57 for PVL.

Time	Conv. ^b	M _{n,cal} (g/mol)	$M_{\rm n,exp}({ m g/mol})^{ m c}$	а
30 min	8 %	4600	4200	1.12
2 h	26 %	14800	13300	1.10
4 h	51 %	29100	22300	1.15
6 h	68 %	38800	31000	1.18
8 h	80 %	45700	38100	1.21
10 h	98 %	55900	46100	1.46

Table S3. The results of monomer conversion and molecular weight versus time ^a

^a Unless otherwise specified, reaction conditions are [NHO3]₀:[U1]₀:[BnOH]₀:[ϵ -CL]₀ = 1:2:2:1000 in toluene at room temperature. ^b Determined by ¹H NMR in CDCl₃ using integrals of the characteristic signals. ^c Number-average molar mass (M_n) and dispersity values were determined by GPC in THF at 25 °C using polystyrene standards for calibration, and corrected using the factor 0.56 for PCL.

6. MALDI-TOF MS spectrum

Figure S24. MALDI-TOF MS spectrum of the obtained PCL sample (NHO3/U1/BnOH/ ϵ -CL= 1:2:2:200).

References

- 1. W.-C. Chen, J.-S. Shen, T. Jurca, C.-J. Peng, Y.-H. Lin, Y.-P. Wang, W.-C. Shih, G. P. A. Yap and T.-G. Ong, *Angew. Chem., Int. Ed.*, 2015, **54**, 15207-15212.
- 2. S. Naumann, A. W. Thomas and A. P. Dove, Angew. Chem., Int. Ed., 2015, 54, 9550-9554.
- 3. V. B. Saptal and B. M. Bhanage, ChemSusChem, 2016, 9, 1980-1985.
- 4. P. Walther, W. Frey and S. Naumann, Polym. Chem., 2018, 9, 3674-3683.
- 5. S. Kronig, P. G. Jones and M. Tamm, Eur. J. Inorg. Chem., 2013, 13, 2301-2314.
- 6. V. Štrukil, M. D. Igrc, M. Eckert-Maksić and T. Friščić, *Chem. Eur. J.*, 2012, **18**, 8464-8473.
- 7. C. B. Tripathi and S. Mukherjee, Org. Lett., 2014, 16, 3368-3371.
- 8. J. Sun, and D. Kuckling, Polym. Chem., 2016, 7, 1642-1649.
- 9. Z.-L. Jiang; J.-P. Zhao and G.-Z. Zhang, Chinese J. Polym. Sci., 2019, 37, 1205-1214.
- L. Zhou, G. Xu, Q. Mahmood, C. Lv, X. Wang, X. Sun, K. Guo and Q. Wang, *Polym. Chem.*, 2019, 10, 1832-1838.
- B. Orhan, M. J.-L. Tschan, A.-L. Wirotius, A. P. Dove, O. Coulembier and D. Taton, ACS Macro. Lett., 2018, 7, 1413-1419.