Cationic Polyurethane from CO_{2}-polyol as Effective Barrier Binder to Polyaniline-based Metal Anti-corrosion Material
 Chenyang Zou, ${ }^{\text {a,b }}$ Qinghai Zhou, ${ }^{\text {a,b }}$ Xianhong Wang, ${ }^{*, b}$ Hongming Zhang, ${ }^{\text {a }}$ and Fosong Wang ${ }^{\text {a }}$
 ${ }^{a}$ Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. E-mail: xhwang@ciac.ac.cn; Fax: +86 43185689095 ; Tel: +86 43185262250
 ${ }^{\text {b }}$ University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

Contents

Synthesis of BDE and TDTD S2
Synthesis of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde S2-S3
${ }^{1} \mathrm{H}$-NMR spectrum and mass spectrometry of BDE S4-S5
${ }^{1} \mathrm{H}$-NMR spectrum and mass spectrometry of TDTD S6-S7
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde
${ }^{1} \mathrm{H}$-NMR spectrum, FT-IR and GPC of CO_{2}-polyol S10-S12
Synthetic protocols for all CPUDs S13-S15
FT-IR spectrum for all CPUDs S16
GPC traces and ${ }^{\mathbf{1}} \mathbf{H}-N M R$ spectrum for all CPUDs S17-S22
Calculation equation of \mathbf{N}^{+}content S23
Photographs of CS plates coated with different CPUDs S24

Synthesis of BDE

To a 250 ml single-neck round bottom flask with a magnetic stir bar was added 1,4butanediol diglycidyl ether $(16.18 \mathrm{~g}, 80 \mathrm{mmol})$, excess amount of diethylamine, and $\mathrm{H}_{2} \mathrm{O}$ (30 ml), a yellow solution was formed upon vigorous stirring at room temperature overnight. The reaction process was monitored with thin layer chromatograph (TLC), when the 1,4butanediol diglycidyl ether was consumed completely, another 30 ml of $\mathrm{H}_{2} \mathrm{O}$ was added, after 10 min stirring the mixture was extracted with diethyl ether for three times ($3 \times 50 \mathrm{ml}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure to afford BDE. (Yield: 95\%)

Synthesis of TDTD

A similar synthesis process to BDE , the only difference is the remaining $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}$ Trimethylethylenediamine was removed by vacuum distillation. (Yield: 89\%)

Synthesis of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde

3-(4-bromophenyl)propan-1-ol $(4.628 \mathrm{~g}, 21.52 \mathrm{mmol})$ and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde ($4.76 \mathrm{~g}, 20.50 \mathrm{mmol}$) as well as $\mathrm{Na}_{2} \mathrm{CO}_{3}(22.81 \mathrm{~g}, 215.2$ mmol) were dissolved in 300 mL of tetrahydrofuran and $60 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. After the addition of tetrakis(triphenylphosphine)palladium $(1.24 \mathrm{~g}, 1.076 \mathrm{mmol})$, the mixture was refluxed for 12 h .

When it was cooled to room temperature, the solution was extracted twice with dichloromethane $(3 \times 50 \mathrm{~mL})$. The obtained organic layer was washed with plenty of water and the solvent was removed at reduced pressure. The residue was chromatographed on a silica gel column to give yellow solid with 77% yield.

Fig. S1 The ${ }^{1} \mathrm{H}$-NMR spectrum of BDE in CDCl_{3}.

Fig. S2 The mass spectrometry of BDE in positive mode.

Fig. $\mathbf{S 3}$ The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of TDTD in CDCl_{3}.

20200729 pos_200723152137 \#2 RT: 0.00 AV: 1 NL: 2.39E7

Fig. S4 The mass spectrometry of TDTD in positive mode.

Figure S5. The ${ }^{1} \mathrm{H}$-NMR spectrum of 4'-(3-hydroxypropyl)-[1, 1'-biphenyl]-4-carbaldehyde in CDCl_{3}.

Figure S6. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde in CDCl_{3}.

Fig. S7 The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of CO_{2}-polyol in CDCl_{3}.

Fig. S8 The FT-IR spectrum of CO_{2}-polyol.

Fig. S9 The GPC spectrum of CO_{2}-polyol.

Fig. S10 Synthetic route to prepare CPUD using DPA as internal emulsifier with different neutralization degree.

Synthesis of PPC-DPA-4

Synthesized using the same method as PPC-TDTD-4.
14.31 g of PPC-diol; 6.30 g of IPDI; 0.92 g of DPA; 1.58 g of BDO; 0.51 g of HOAc

Synthesis of PPC-DPA-4(1)

Synthesized using the same method as PPC-TDTD-4.
16.20 g of PPC-diol; 7.128 g of IPDI; 1.023 g of DPA; 1.79 g of BDO; 0.28 g of HOAc

Fig. S11 Synthetic route to prepare CPUD using BDE as internal emulsifier with different neutralization degree.

Synthesis of PPC-BDE-4

Synthesized using the same method as PPC-TDTD-4.
13.40 g of PPC-diol; 5.90 g of IPDI; 0.87 g of BDE; 1.62 g of BDO; 0.30 g of HOAc

Synthesis of PPC-BDE-4(1)

Synthesized using the same method as PPC-TDTD-4.
17.10 g of PPC-diol; 7.524 g of IPDI; 1.116 g of BDE; 2.06 g of $\mathrm{BDO} ; 0.19 \mathrm{~g}$ of HOAc

Fig. S12 Synthetic route to prepare PPC-TDTD-4(1).

Synthesis of PPC-TDTD-4(1)

Synthesized using the same method as PPC-TDTD-4.
20.10 g of PPC-diol; 8.84 g of IPDI; 1.30 g of TDTD; 2.47 g of BDO; 0.20 g of HOAc

Fig. S13 FT-IR spectrum for various CPUDs.

Fig. S14 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PPC-DPA-4.

Fig. S15 GPC traces of PPC-DPA-4.

Fig. S16 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PPC-DPA-4(1).

Fig. S17 GPC traces of PPC-DPA-4(1).

Fig. S18 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PPC-BDE-4.

Fig. S19 GPC traces of PPC-BDE-4.

Fig. S20 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PPC-BDE-4(1).

Fig. S21 GPC traces of PPC-BDE-4(1).

Fig. S22 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of PPC-TDTD-4.

Fig. S23 GPC traces of PPC-TDTD-4.

Fig. S24 ${ }^{1} \mathrm{H}$-NMR spectrum of PPC -TDTD-4(1).

Fig. S25 GPC traces of PPC-TDTD-4(1).

Content $\left(\mathrm{N}^{+}, \%\right)=$ content of hydrophilic group $(w t \%) \times \frac{M(N)}{M(C E)} \times \frac{n(H O A c)}{n}$
$\mathrm{M}(\mathrm{N})$ means the sum of relative atomic mass of nitrogen in a molecule and $\mathrm{M}(\mathrm{CE})$ is the relative molecular mass of the corresponding chain extender, so the second term represents the mass fraction of nitrogen atoms; $\mathrm{n}(\mathrm{HOAc})$ refers to the actual molar amount of HOAc used in the preparation process and n is the theoretical molar amount of HOAc required under the assumption of 100% neutralization, therefore the third term represents the degree of neutralization.

Fig. S26 The photographs of CS plates coated with PPC-DPA-4, PPC-DPA-4(1), PPC-BDE-4, PPC-BDE-4(1), PPC-TDTD-4 and PPC-TDTD-4(1).

