Electronic Supplementary Information

Cationic Polyurethane from CO₂-polyol as Effective Barrier

Binder to Polyaniline-based Metal Anti-corrosion Material

Chenyang Zou,^{a,b} Qinghai Zhou,^{a, b} Xianhong Wang,*a,b Hongming Zhang,^a and Fosong Wang^a

^{*a*} Key Laboratory of Polymer Eco-materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. E-mail: xhwang@ciac.ac.cn; Fax: +86 431 85689095; Tel: +86 431 85262250

^b University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

Contents

Synthesis of BDE and TDTD	S2
Synthesis of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde	S2-S3
¹ H-NMR spectrum and mass spectrometry of BDE	S4-S5
¹ H-NMR spectrum and mass spectrometry of TDTD	S6-S7
¹ H-NMR and ¹³ C-NMR of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carba	ldehyde
	S8-S9
¹ H-NMR spectrum, FT-IR and GPC of CO ₂ -polyol	S10-S12
Synthetic protocols for all CPUDs	S13-S15
FT-IR spectrum for all CPUDs	S16
GPC traces and ¹ H-NMR spectrum for all CPUDs	S17-S22
Calculation equation of N ⁺ content	S23
Photographs of CS plates coated with different CPUDs	S24

Synthesis of BDE

To a 250 ml single-neck round bottom flask with a magnetic stir bar was added 1,4butanediol diglycidyl ether (16.18 g, 80 mmol), excess amount of diethylamine, and H₂O (30 ml), a yellow solution was formed upon vigorous stirring at room temperature overnight. The reaction process was monitored with thin layer chromatograph (TLC), when the 1,4butanediol diglycidyl ether was consumed completely, another 30 ml of H₂O was added, after 10 min stirring the mixture was extracted with diethyl ether for three times (3 x 50 ml). The combined organic layer was dried over anhydrous Na₂SO₄, and the solvent was removed under reduced pressure to afford BDE. (Yield: 95%)

Synthesis of TDTD

A similar synthesis process to BDE, the only difference is the remaining N,N,N'-Trimethylethylenediamine was removed by vacuum distillation. (Yield: 89%)

Synthesis of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde

3-(4-bromophenyl)propan-1-ol (4.628 g, 21.52 mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzaldehyde (4.76 g, 20.50 mmol) as well as Na₂CO₃ (22.81g, 215.2 mmol) were dissolved in 300 mL of tetrahydrofuran and 60ml H₂O. After the addition of tetrakis(triphenylphosphine)palladium (1.24g, 1.076mmol), the mixture was refluxed for 12 h.

When it was cooled to room temperature, the solution was extracted twice with dichloromethane (3×50 mL). The obtained organic layer was washed with plenty of water and the solvent was removed at reduced pressure. The residue was chromatographed on a silica gel column to give yellow solid with 77 % yield.

Fig. S1 The ¹H-NMR spectrum of BDE in CDCl₃.

Fig. S2 The mass spectrometry of BDE in positive mode.

Fig. S3 The ¹H-NMR spectrum of TDTD in CDCl₃.

Fig. S4 The mass spectrometry of TDTD in positive mode.

Figure S5. The ¹H-NMR spectrum of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde in CDCl₃.

Figure S6. The ¹³C-NMR spectrum of 4'-(3-hydroxypropyl)-[1,1'-biphenyl]-4-carbaldehyde in CDCl₃.

Fig. S7 The ¹H-NMR spectrum of CO₂-polyol in CDCl₃.

Fig. S8 The FT-IR spectrum of CO₂-polyol.

Fig. S9 The GPC spectrum of CO_2 -polyol.

Fig. S10 Synthetic route to prepare CPUD using DPA as internal emulsifier with different

Synthesis of PPC-DPA-4

neutralization degree.

Synthesized using the same method as PPC-TDTD-4.

14.31 g of PPC-diol; 6.30 g of IPDI; 0.92 g of DPA; 1.58 g of BDO; 0.51 g of HOAc

Synthesis of PPC-DPA-4(1)

Synthesized using the same method as PPC-TDTD-4.

16.20 g of PPC-diol; 7.128 g of IPDI; 1.023 g of DPA; 1.79 g of BDO; 0.28 g of HOAc

Fig. S11 Synthetic route to prepare CPUD using BDE as internal emulsifier with different neutralization degree.

Synthesis of PPC-BDE-4

Synthesized using the same method as PPC-TDTD-4.

13.40 g of PPC-diol; 5.90 g of IPDI; 0.87 g of BDE; 1.62 g of BDO; 0.30 g of HOAc

Synthesis of PPC-BDE-4(1)

Synthesized using the same method as PPC-TDTD-4.

17.10 g of PPC-diol; 7.524 g of IPDI; 1.116 g of BDE; 2.06 g of BDO; 0.19 g of HOAc

Fig. S12 Synthetic route to prepare PPC-TDTD-4(1).

Synthesis of PPC-TDTD-4(1)

Synthesized using the same method as PPC-TDTD-4.

20.10 g of PPC-diol; 8.84 g of IPDI; 1.30 g of TDTD; 2.47 g of BDO; 0.20 g of HOAc

Fig. S13 FT-IR spectrum for various CPUDs.

Fig. S14 ¹H-NMR spectrum of PPC-DPA-4.

Fig. S15 GPC traces of PPC-DPA-4.

Fig. S16 ¹H-NMR spectrum of PPC-DPA-4(1).

Fig. S17 GPC traces of PPC-DPA-4(1).

Fig. S18 ¹H-NMR spectrum of PPC-BDE-4.

Fig. S19 GPC traces of PPC-BDE-4.

that е 13 12 'n 0 10 9 8 7 6 f1 (ppm) 4 3 1 -1 5 2

Fig. S20 ¹H-NMR spectrum of PPC-BDE-4(1).

Fig. S21 GPC traces of PPC-BDE-4(1).

Fig. S22 ¹H-NMR spectrum of PPC-TDTD-4.

Fig. S23 GPC traces of PPC-TDTD-4.

8.082 7.201 4.997 4.997 4.997 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.867 4.8756 4.8756 4.8756 4.8756 4.8756 4.8756 4.8756 4.8756 4.8756 4.8

Fig. S24 ¹H-NMR spectrum of PPC-TDTD-4(1).

Fig. S25 GPC traces of PPC-TDTD-4(1).

Content (N⁺, %) =
$$\frac{\text{content of hydrophilic group (wt %)} \times \frac{M(N)}{M(CE)} \times \frac{n(HOAc)}{n}}{n}$$

M(N) means the sum of relative atomic mass of nitrogen in a molecule and M(CE) is the relative molecular mass of the corresponding chain extender, so the second term represents the mass fraction of nitrogen atoms; n(HOAc) refers to the actual molar amount of HOAc used in the preparation process and n is the theoretical molar amount of HOAc required under the assumption of 100% neutralization, therefore the third term represents the degree of neutralization.

Fig. S26 The photographs of CS plates coated with PPC-DPA-4, PPC-DPA-4(1), PPC-BDE-4, PPC-BDE-4(1), PPC-TDTD-4 and PPC-TDTD-4(1).