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Table S1. General Formula for the classification of deep eutectic solvents1, 2

type general formula terms

type Ⅰ Cat+X−zMClx M = Zn, Sn, Fe, Al, Ga, In

type Ⅱ Cat+X−zMClx·yH2O M = Cr, Co, Cu, Ni, Fe

type Ⅲ Cat+X−zRZ Z = CONH2, COOH, OH

type Ⅳ MClx + RZ = MClx−1
+·RZ+ MClx+1

- M = Al, Zn and Z = CONH2, OH

Deep eutectic solvents can be described by the general formula:

                 Cat+X-zY                                             (1)

where Cat+ is in principle any ammonium, phosphonium, or sulfonium cation, and X is a Lewis 

base, generally a halide anion. The complex anionic species are formed between X− and either a Lewis 

or Brønsted acid Y (z refers to the number of Y molecules that interact with the anion). 

Table S2. The detailed components and mole ratios of the prepared PDESs

Sample
ChCl:AA: AlCl3·6H2O 

(mole ratio)
Appearance

PDES-0 1:2:0 Transparent, colorless liquid

PDES-1/100 1:2:1/100 Transparent, colorless liquid

PDES-1/50 1:2:1/50 Transparent, colorless liquid

PDES-1/25 1:2:1/25 Transparent, colorless liquid

PDES-1/5 1:2:1/5 turbid liquid with precipitation



Figure S1. The physical appearances of ChCl, AA, and AlCl3·6H2O mixtures with various mole 

ratios.

Figure S2. FTIR spectroscopy of PDESs with various Al(III) content



Figure S3. 1H NMR spectra of ChCl/AA/Al(III) type PDESs. The spectra were recorded using 

CDCl3 as the external reference.

Figure S4. DSC traces for PDESs with various Al(III) content.



Figure S5. Digital photographs of PDES before (i) and after (ii) photopolymerization.

Figure S6. Optical transmittance of TSHTCEs with various (a) Al(III) content and (b) thickness.



Figure S7. The high-resolution O 1s peak for TSHTCE-0 and TSHTCE-1/50. As shown, a new peak 

occurred at 531.8 eV, which can be ascribed to Al(III)-carboxyl complexes.

Figure S8. C1s peak for TSHTCE-0 (down) and TSHTCE-1/50 (top).



Figure S9. Thermal gravimetric analysis (TGA) curves of TSHTCEs with various Al(III) content. 

Figure S10. A TSHTCE film can lift a 1500 g load without significant elongation, which is 1000 

times greater than its own weight.



Figure S11. The TSHTCE film exhibit excellent puncture-resistance capability.

Figure S12. (a) The calculation method for toughness and (b) the toughness of prepared TSHTCEs.



Figure S13. (a) The optical pictures and (b) measured length of TSHTCEs before and after tensile 

tests.

Figure S14. Cyclic tensile tests for TSHTCE-0 without Al(III) crosslinking.



Figure S15. (a) Continuous cyclic tensile loading−unloading curves under different strains (100%, 

200%, 300%, 400%) and (b) corresponding toughness and energy dissipation ratio.

Figure S16. Electrical properties of TSHTCEs. (a) Optical diagram of a TSHTCE film in series circuit 

with a LED bulb, where the brightness of the LED changes with the deformation of the TSHTCE film. 

(b) Electrochemical impedance spectroscopy (EIS) plots and (c) the calculated ionic conductivities of 

TSHTCEs with various Al(III) content.



Figure S17. The dependence of relative resistance changes of TSHTCE-1/50 film on the strain.

Table S3. Comparison with existing reported polymer-based sensors

category Components Transparency Conductivity Stretchability
Mechanical 

strength 

Self-

healing
Ref.

polyvinyl alcohol+ 
polyacrylamide

>90% Not given ~500% 80-200 KPa No 3

poly(acrylamide-co-2-

acrylamido-2-methyl-1-

propanesulfonic acid)

>90% No ~900% ~6 MPa No 4

poly(glycerol sebacate)-co-

poly(ethylene glycol)-g-catechol 

prepolymer (PEGSD) +UPy-

hexamethylene diisocyanate 

(HDI) synthon modified gelatin 

(GTU)

No No ~1000% 2-5 KPa Yes 5

Poly(sulfobetaine methacrylate) + 

dopamine
~90% Not given ~700% 30 KPa Yes 6

Hydrogel

PDA–clay–PSBMA No 0.02 S·m-1 ~900% 80 KPa Yes 7

4-acryloylmorpholine + 

propylene carbonate
93%

7.9 × 10−4 

S·cm−1
1219% 25-50 kPa No 8

1-vinyl-3-(carboxymethyl)-

imidazolium+ polyacrylamide + 

KCl

92% 1.1 S· m-1 900% 20-60 kPa Yes 9

(LiTFSI) + butyl acrylate 92.4%
1.27 × 10−7 

S·cm−1
1100% 0.25 MPa No 10

Ionic gel

1-butyl-2,3-dimethylimidazolium 90% 10-5-10-3 S·cm-1 1312% 0.4 MPa No 11



bis(trifluoromethylsulfonyl)amine 

+ 

ionic liquids+PVDFco-HFP-5545 90% 10−4 S cm−1 5000% 0.1 MPa No 12

This work ChCl+AA+AlCl3·6H2O 92%
6.64~10.29×1

0-4 S/m
470%~900% 1.28~6.03 MPa Yes
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