Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Dual hydrogen-bond donor groups-containing Zn-MOF for the highly effective coupling of CO₂ and epoxides under mild and solvent-free conditions

Ziyu Gao, Xiao Zhang, Ping Xu, Jianmin Sun*

State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China

Corresponding author: sunjm@hit.edu.cn (Jianmin Sun)

Table of Contents

Table S1 Crystal data and structure refinement	S2
Table S2 The selected bond lengths and angles	S2
Fig. S1 Calibration curve of PC yield based on GC results	S3
Fig. S2 N_2 adsorption-desorption isotherm of $Zn_3(L)_3(H_2L)$ and the pore	size
distribution calculated from desorption isotherm	S3

X-ray Crystallography

_

Empirical formula	$C_{32}H_{20}N_4O_{16}Zn_3$
Formula weight	912.63
Temperature/K	302.93
Crystal system	monoclinic
Space group	<i>C2/c</i>
$a/\text{\AA}$	33.5352(13)
$b/\text{\AA}$	9.8226(4)
$c/{ m \AA}$	18.0794(7)
Volume/Å3	5949.1(4)
Ζ	4
ρcalcg/cm3	1.019
μ/mm-1	1.248
<i>F</i> (000)	1832.0
Reflections collected	43220
Independent reflections	5401 [$R_{int} = 0.0611$, $R_{sigma} = 0.0341$]
Data/restraints/parameters	5401/0/272
Goodness-of-fit on F2	1.118
Final <i>R</i> indexes [I>= 2σ (I)]	$R_1 = 0.0404, wR_2 = 0.1340$
Final <i>R</i> indexes [all data]	$R_1 = 0.0537, wR_2 = 0.1414$

Table S1 Crystal data and structure refinement for $Zn_3(L)_3(H_2L)$

Table S2 The selected bond lengths (Å) and angles (deg) of $Zn_3(L)_3(H_2L)$

Zn1- O1	1.956(3)	01- Zn1- O3 ⁱ	108.58(14)
Zn1- O3 ⁱ	1.978(3)	O1- Zn1- O8	111.53(11)
Zn1- O5	1.941(3)	O3 ⁱ - Zn1- O8	97.01(12)
Zn1- O8	2.016(3)	O5- Zn1- O1	98.55(16)
Zn2- O2 ⁱⁱ	2.048(3)	O5- Zn1- O3 ⁱ	103.75(14)
Zn2- O2 ⁱⁱⁱ	2.048(3)	O5- Zn1- O8	135.48(16)
Zn2- O4	2.033(2)	O2 ⁱⁱ - Zn2- O2 ⁱⁱⁱ	180.0
Zn2- O4 ^{iv}	2.033(2)	O2 ⁱⁱⁱ - Zn2- O8 ⁱⁱⁱ	90.17(10)
Zn2- O8 ⁱⁱⁱ	2.263(2)	O2 ⁱⁱⁱ - Zn2- O8 ⁱⁱ	89.83(10)
Zn2- O8 ⁱⁱ	2.263(2)	O4- Zn2- O2 ⁱⁱⁱ	93.88(11)
		O4- Zn2- O2 ⁱⁱ	86.12(11)
		O4 ^{iv} - Zn2- O2 ⁱⁱ	93.88(11)
		O4 ^{iv} - Zn2- O2 ⁱⁱⁱ	86.12(11)
O4 ^{iv} - Zn2- O8 ⁱⁱ	89.36(10)	O4 ^{iv} - Zn2- O4	180.0
O4- Zn2- O8 ⁱⁱ	90.64(10)	O4 ^{iv} - Zn2- O8 ⁱⁱⁱ	90.64(10)
O8 ⁱⁱⁱ - Zn2- O8 ⁱⁱ	180.0	O4- Zn2- O8 ⁱⁱⁱ	89.36(10)

Symmetry codes: (i) x, -y, -0.5+z; (ii) 0.5-x, -0.5+y, 1.5-z; (iii) x, -y, 0.5+z; (iv) 0.5-x, -0.5-y, 2-z

Fig. S1 Calibration curve of PC yield based on GC results

In the GC chromatograms of product PC, the special retention time of PC is 2.8-3.2 min. So the yield could be calculated by the calibration curve of PC yield (Fig. S1) with the peak area in the range of time.

Fig. S2 N₂ adsorption–desorption isotherm of Zn₃(L)₃(H₂L) and the pore size distribution calculated from desorption isotherm