Ligand Substitution Induced Single-Crystal-to-Single-Crystal

Transformations in Two Ni(II) Coordination Compounds Displaying

Consequential Changes in Proton Conductivity

Rong-Yun Li, Hou-Ting Liu, Chuan-Cong Zhou, Zhi-Tong Chu, Jing Lu*, Su-Na Wang*, Juan Jin, Wen-Fu Yan

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology,

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059 PR

China; E-mail: lujing @lcu.edu.cn; wangsuna@lcu.edu.cn

Ni(1)-N(3)	2.048(3)	Ni(1)-N(4)	2.049(3)
Ni(1)-N(2)	2.057(3)	Ni(1)-O(1)	2.058(3)
Ni(1)-N(1)	2.060(3)	Ni(1)-O(2)	2.205(3)
N(3)-Ni(1)-N(4)	79.66(13)	N(3)-Ni(1)-N(2)	95.28(12)
N(4)-Ni(1)-N(2)	93.62(12)	N(3)-Ni(1)-O(1)	90.89(12)
N(4)-Ni(1)-O(1)	95.45(11)	N(2)-Ni(1)-O(1)	169.82(12)
N(3)-Ni(1)-N(1)	172.78(12)	N(4)-Ni(1)-N(1)	104.29(13)
N(2)-Ni(1)-N(1)	78.54(12)	O(1)-Ni(1)-N(1)	94.71(12)
N(3)-Ni(1)-O(2)	90.76(12)	N(4)-Ni(1)-O(2)	155.29(11)
N(2)-Ni(1)-O(2)	110.02(11)	O(1)-Ni(1)-O(2)	61.70(10)
N(1)-Ni(1)-O(2)	87.88(12)		

STable. 1. Selected bond lengths (Å) and band angles (°) for compounds 1.

STable. 2. Selected bond lengths (Å) and band angles (°) for compound ${\bf 2}$

Ni(1)-O(4)	2.035(3)	Ni(1)-O(8)	2.059(3)
Ni(1)-O(9)	2.061(3)	Ni(1)-N(1)	2.073(3)
Ni(1)-O(7)	2.074(3)	Ni(1)-N(2)	2.083(3)
Ni(2)-O(18)	2.023(3)	Ni(2)-N(4)	2.063(3)
Ni(2)-O(20)	2.064(3)	Ni(2)-N(3)	2.072(3)
Ni(2)-O(17)	2.108(3)	Ni(2)-O(16)	2.202(2)
O(4)-Ni(1)-O(8)	89.56(11)	O(4)-Ni(1)-O(9)	92.14(12)
O(8)-Ni(1)-O(9)	91.85(11)	O(4)-Ni(1)-N(1)	88.57(12)
O(8)-Ni(1)-N(1)	175.11(13)	O(9)-Ni(1)-N(1)	92.74(13)
O(4)-Ni(1)-O(7)	176.25(12)	O(8)-Ni(1)-O(7)	89.97(11)
O(9)-Ni(1)-O(7)	91.59(11)	N(1)-Ni(1)-O(7)	91.59(12)
O(4)-Ni(1)-N(2)	85.48(12)	O(8)-Ni(1)-N(2)	97.03(12)
O(9)-Ni(1)-N(2)	170.78(12)	N(1)-Ni(1)-N(2)	78.32(13)

O(7)-Ni(1)-N(2)	90.89(12)	O(18)-N	i(2)-N(4)	101.71(12)		
O(18)-Ni(2)-O(20)	88.63(12)	N(4)-Ni(2)-O(20)		92.53(14)		
O(18)-Ni(2)-N(3)	104.01(12)	N(4)-Ni(2)-N(3)	79.24(14)		
O(20)-Ni(2)-N(3)	166.03(13)	O(18)-N	i(2)-O(17)	97.10(11)		
N(4)-Ni(2)-O(17)	160.97(11)	O(20)-N	i(2)-O(17)	90.78(12)		
N(3)-Ni(2)-O(17)	93.49(12)	O(18)-N	i(2)-O(16)	156.95(11)		
N(4)-Ni(2)-O(16)	100.96(11)	O(20)-N	i(2)-O(16)	86.30(11)		
N(3)-Ni(2)-O(16)	84.24(11)	O(17)-N	i(2)-O(16)	60.55(9)		
STable. 3. Hydrogen bonds for compounds 1 and 2						
D-H	d(D-H)	d (HA)	<dha< td=""><td>d (DA)</td></dha<>	d (DA)		
compound 1						
O7-H-O3 ^{#1}	0.820	1.691	164.18	2.490		
O11-H-O9 ^{#3}	0.850	2.044	159.17	2.855		
O11-H-Br ^{#4}	0.850	2.677	124.61	3.237		
O12-H-O3 ^{#5}	0.850	2.194	156.38	2.992		
O12-H-O8 ^{#6}	0.850	2.019	155.79	2.816		
compound 2						
O2-HO3 ^{#1}	0.820	1.765	176.47	2.584		
O10-HO16 ^{#3}	0.850	1.928	158.40	2.707		
O15-HO6 ^{#4}	0.850	1.886	154.86	2.651		
O21-HO19 ^{#6}	0.850	1.840	152.84	2.597		

Symmetric code: **Compound 1**:#1 -*x*+3, -*y*+1, -*z*+2; #2 *x*, *y*, *z*-1; #3 *x*-1, *y*, *z* ;#4 *x*+1, *y*+1, *z*; #5*x*+1, -*y*+1, -*z*+2;#6 *x*-2, *y*, *z*; **Compound 2**:#1 -*x*, -*y*+1, -*z*-1; #2 -*x*+1, -*y*+1, -*z*; #3*x*+1, *y*+1, *z*; #4*x*-1, *y*-1, *z*; #5 -*x*, -*y*, -*z*; #6 -*x*+1, -*y*, -*z*+1

Fig S1. Powder X-ray diffraction patterens of (a) compound 1 and (b) compound 2

Fig S2. The conductivity 1/Nafion (a) and 2/Nafion (b) at different temperature

Fig S3. The PXRD patterns of compounds 1 (a) and 2 (b) after water-treatment under different conditions.

Fig S4. The PXRD patterns of 1/Nafion (a) and 2/Nafion (b) before electrochemical experiment and after electrochemical experiment.

Fig S5. TheTG curves of 1 (a) and 2 (b).