Supporting Information

Single-chain magnet behavior in 2p-3d-4f spin array with nitronyl nitroxide biradical

Juan Sun,^a Jing Xie,^a Licun Li,^{*,a} Jean-Pascal Sutter^{*,b}

^{*a*} Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.

E-mail: llicun@nankai.edu.cn

^{*b*} Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.

E-mail: sutter@lcc-toulouse.fr

Contents

Table S1. Selected bond lengths [Å] and angles [°] for 1
Table S2. Selected bond lengths [Å] and angles [°] for 2 4
Table S3. Selected bond lengths [Å] and angles [°] for 3
Table S4. Table S4. SHAPE analysis for the Ln coordination spheres for 1-36
Fig. S1 Powder X-ray diffraction patterns of complexes 1-3
Fig. S2 One-dimensional structure of 1 and local coordination geometry of Gd(III) ion
Fig. S3 One-dimensional structure of 3 and local coordination geometry of Ho(III) ion
Fig. S4 Packing arrangement of the chains in 1 7
Fig. S5 Packing arrangement of the chains in 2

Fig. S6 Packing arrangement of the chains in 3
Fig. S7 Plot of magnetization vs field for 1 at 2 K9
Fig. S8 Plot of magnetization vs field for 2 at 2 K9
Fig. S9 Compound 3: (a) $\chi_M T = f(T)$ for susceptibility data obtained in a field of 50
Oe (in red) and 1 kOe (in blue); (b) magnetization vs field at 2 K, 3 K, 4 K and 5 K; (c)
$\ln(\chi_M T) = f(1/T)$ and best fit of the linear section between 2.5 and 5 K10
Fig. S10 Temperature dependence of in phase (χ') and out of phase (χ'') of 1 in 0 Oe
dc field with an oscillation of 3 Oe10
Fig. S11 Temperature-dependent ac signals under a zero dc field for compound 211
Fig. S12. Compound 3 : χ_M' and $\chi_M'' = f(T)$ in zero and 1 kOe dc field between 2-10 K 11

Bond distances			
Gd(1)-O(3)	2.393(5)	Cu(2)-O(9)#1	1.927(6)
Gd(1)-O(2)	2.386(5)	Cu(2)-O(1)	2.386(6)
Gd(1)-O(13)	2.355(6)	Cu(2)-O(1)#1	2.386(6)
Gd(1)-O(18)	2.379(5)	Cu(2)-O(10)#1	1.934(6)
Gd(1)-O(15)	2.318(5)	Cu(2)-O(10)	1.934(6)
Gd(1)-O(17)	2.320(6)	Cu(3)-O(12)	1.927(5)
Gd(1)-O(16)	2.385(5)	Cu(3)-O(11)	1.936(6)
Gd(1)-O(14)	2.381(6)	Cu(3)-O(4)	2.611(6)
Cu(1)-O(8)	1.936(6)	Cu(3)-O(4)#1	2.611(6)
Cu(1)-O(5)	1.981(7)	O(3)-N(4)	1.293(8)
Cu(1)-N(1)	2.033(7)	O(2)-N(3)	1.302(8)
Cu(1)-O(7)	2.136(6)	N(5)-O(4)	1.271(8)
Cu(1)-O(6)	1 930(6)	N(2)-O(1)	1 275(8)
Cu(2)-O(9)	1.927(5)		1.2,0(0)
Angles			
O(2)-Gd(1)-O(3)	82.42(18)	O(6)-Cu(1)-O(8)	173.8(3)
O(13)-Gd(1)-O(3)	71 38(17)	O(6)-Cu(1)-O(5)	90 7(3)
O(13)-Gd(1)-O(2)	115 51(18)	O(6)-Cu(1)-N(1)	93 3(3)
O(13)- $Gd(1)$ - $O(18)$	139 54(18)	O(6)-Cu(1)-O(7)	87 4(3)
O(13)-Gd(1)-O(16)	73 1(2)	O(9)#1-Cu(2)-O(9)	180
O(13)- $Gd(1)$ - $O(14)$	72 3(2)	O(9)#1-Cu(2)-O(1)#1	93 2(2)
O(18)-Gd(1)-O(3)	70 70(17)	O(9)#1-Cu(2)-O(1)	86 8(2)
O(18)-Gd(1)-O(2)	72.57(18)	O(9)-Cu(2)-O(1)	93.2(2)
O(18)- $Gd(1)$ - $O(16)$	130 95(18)	O(9)-Cu(2)-O(1)#1	86 8(2)
O(18)- $Gd(1)$ - $O(14)$	140.5(2)	O(9)-Cu(2)-O(10)	87.6(2)
O(15)-Gd(1)-O(3)	83 7(2)	O(9)#1-Cu(2)-O(10)#1	87.6(2)
O(15)-Gd(1)-O(2)	146 57(19)	O(9)-Cu(2)-O(10)#1	92.4(2)
O(15)-Gd(1)-O(13)	88.3(2)	O(9)#1-Cu(2)-O(10)	92.4(2)
O(15)-Gd(1)-O(18)	74.15(18)	O(1)#1-Cu(2)-O(1)	180
O(15)-Gd(1)-O(17)	88 8(2)	O(10)-Cu(2)-O(1)	98 3(3)
O(15)- $Gd(1)$ - $O(16)$	71.8(2)	O(10)#1-Cu(2)-O(1)#1	98 3(3)
O(15)-Gd(1)-O(14)	1414(2)	O(10)#1-Cu(2)-O(1)	81 7(3)
O(17)-Gd(1)-O(3)	142.73(19)	O(10)-Cu(2)-O(1)#1	81 7(3)
O(17)-Gd(1)-O(2)	84 1(2)	O(10)#1-Cu(2)-O(10)	180
O(17)-Gd(1)-O(13)	1450(2)	O(12)-Cu(3)-O(11)#2	86 8(2)
O(17)-Gd(1)-O(18)	72 13(19)	O(11)-Cu(3)-O(4)	78 8(2)
O(17)-Gd(1)-O(16)	72.9(2)	O(11)#2-Cu(3)-O(4)	101.2(2)
O(17)-Gd(1)-O(14)	89 0(2)	O(11)-Cu(3)-O(11)#2	180
O(16)-Gd(1)-O(3)	137.0(2)	O(12)#2-Cu(3)-O(4)	97 4(2)
O(16)-Gd(1)-O(2)	135 5(2)	O(12)-Cu(3)-O(4)	82 6(2)
O(14)-Gd(1)-O(3)	118.80(19)	O(12)#2-Cu(3)-O(12)	180
O(14)-Gd(1)-O(2)	71 3(2)	O(12)-Cu(3)-O(11)	93 2(2)
O(14)-Gd(1)-O(16)	70 7(2)	O(12)#2-Cu(3)-O(11)#2	93 2(2)
O(8)-Cu(1)-O(5)	85.3(3)	O(12)#2-Cu(3)-O(11)	86.8(2)
O(8)-Cu(1)-N(1)	92.7(3)	N(4)-O(3)-Gd(1)	139.2(4)
O(8)-Cu(1)-O(7)	89.3(3)	N(3)-O(2)-Gd(1)	136.8(5)
O(5)-Cu(1)-N(1)	143 7(3)	N(2)-O(1)-Cu(2)	149 2(6)
O(5)-Cu(1)-O(7)	107.6(3)	N(5)-O(4)-Cu(3)	144.3(5)
N(1)-Cu(1)-O(7)	108 6(3)		

 Table S1. Selected bond lengths [Å] and angles [°] for 1.

#1 -x,-y+2,-z+1 #2 -x+1,-y+2,-z+1

Bond distances			
Tb(1)-O(3)	2.391(6)	Cu(2)-O(10)	1.923(8)
Tb(1)-O(2)	2.383(6)	Cu(2)-O(10)#2	1.923(8)
Tb(1)-O(15)	2.312(6)	Cu(2)-O(1)#2	2.383(7)
Tb(1)-O(18)	2.384(6)	Cu(2)-O(1)	2.383(7)
Tb(1)-O(13)	2.365(7)	Cu(1)-O(6)	1.932(7)
Tb(1)-O(16)	2.379(6)	Cu(1)-O(8)	1.932(7)
Tb(1)-O(17)	2.328(7)	Cu(1)-O(7)	2.143(8)
Tb(1)-O(14)	2.384(7)	Cu(1)-O(5)	1.977(8)
Cu(3)-O(12)	1.922(6)	Cu(1)-N(1)	2.031(8)
Cu(3)-O(11)#1	1.941(6)	O(3)-N(4)	1.291(9)
Cu(3)-O(11)	1.941(6)	O(2)-N(3)	1.296(9)
Cu(3)-O(4)	2.610(7)	O(4)-N(5)	1.258(10)
Cu(2)-O(9)#2	1.927(6)	O(1)-N(2)	1.246(10)
Cu(2)-O(9)	1.927(6)		
Angles			
O(2)-Tb(1)-O(3)	81.8(2)	O(12)#1-Cu(3)-O(4)	97.0(3)
O(2)-Tb(1)-O(18)	72.4(2)	O(11)#1-Cu(3)-O(11)	180
O(2)-Tb(1)-O(14)	71.3(2)	O(11)#1-Cu(3)-O(4)	79.3(2)
O(15)-Tb(1)-O(3)	83.9(2)	O(11)-Cu(3)-O(4)	100.7(2)
O(15)-Tb(1)-O(2)	146.5(2)	O(9)#2-Cu(2)-O(9)	180
O(15)-Tb(1)-O(18)	74.3(2)	O(9)#2-Cu(2)-O(1)	93.8(3)
O(15)-Tb(1)-O(13)	88.0(3)	O(9)-Cu(2)-O(1)	86.2(3)
O(15)-Tb(1)-O(16)	71.5(2)	O(9)#2-Cu(2)-O(1)#2	86.2(3)
O(15)-Tb(1)-O(17)	88.8(3)	O(9)-Cu(2)-O(1)#2	93.8(3)
O(15)-Tb(1)-O(14)	141.5(3)	O(10)#2-Cu(2)-O(9)#2	92.9(3)
O(18)-Tb(1)-O(3)	71.1(2)	O(10)-Cu(2)-O(9)#2	87.1(3)
O(18)-Tb(1)-O(14)	140.1(3)	O(10)-Cu(2)-O(9)	92.9(3)
O(13)-Tb(1)-O(3)	71.1(2)	O(10)#2-Cu(2)-O(9)	87.1(3)
O(13)-Tb(1)-O(2)	115.3(2)	O(10)-Cu(2)-O(10)#2	180.0(5)
O(13)-Tb(1)-O(18)	139.6(2)	O(10)#2-Cu(2)-O(1)#2	97.8(4)
O(13)-Tb(1)-O(16)	72.9(3)	O(10)-Cu(2)-O(1)	97.8(4)
O(13)-Tb(1)-O(14)	72.8(3)	O(10)-Cu(2)-O(1)#2	82.2(4)
O(16)-Tb(1)-O(3)	136.7(3)	O(10)#2-Cu(2)-O(1)	82.2(4)
O(16)-Tb(1)-O(2)	136.3(2)	O(1)-Cu(2)-O(1)#2	180
O(16)-Tb(1)-O(18)	130.8(2)	O(6)-Cu(1)-O(8)	173.9(3)
O(16)-Tb(1)-O(14)	71.0(3)	O(6)-Cu(1)-O(7)	87.1(3)
O(17)-Tb(1)-O(3)	143.3(2)	O(6)-Cu(1)-O(5)	90.5(3)
O(17)-Tb(1)-O(2)	84.9(3)	O(6)-Cu(1)-N(1)	93.5(3)
O(17)-Tb(1)-O(18)	72.3(2)	O(8)-Cu(1)-O(7)	89.6(3)
O(17)-Tb(1)-O(13)	144.6(2)	O(8)-Cu(1)-O(5)	85.5(3)
O(17)-Tb(1)-O(16)	72.7(3)	O(8)-Cu(1)-N(1)	92.5(3)
O(17)-Tb(1)-O(14)	88.5(2)	O(5)-Cu(1)-O(7)	107.3(3)
O(14)-Tb(1)-O(3)	118.8(2)	O(5)-Cu(1)-N(1)	143.7(3)
O(12)-Cu(3)-O(12)#1	180	N(1)-Cu(1)-O(7)	108.9(3)
O(12)#1-Cu(3)-O(11)	92.8(3)	N(4)-O(3)-Tb(1)	139.3(5)
O(12)#1-Cu(3)-O(11)#1	87.2(3)	N(3)-O(2)-Tb(1)	137.9(6)
O(12)-Cu(3)-O(11)	87.2(3)	N(5)-O(4)-Cu(3)	145.0(6)
O(12)-Cu(3)-O(11)#1	92.8(3)	N(2)-O(1)-Cu(2)	150.1(8)
O(12)-Cu(3)-O(4)	83.0(3)		

 Table S2. Selected bond lengths [Å] and angles [°] for 2.

#1 -x,-y,-z #2 -x+1,-y,-z

Bond distances			
Ho(1)-O(3)	2.362(4)	Cu(2)-O(10)	1.934(5)
Ho(1)-O(2)	2.359(4)	Cu(2)-O(10)#2	1.934(5)
Ho(1)-O(15)	2.284(4)	Cu(2)-O(1)	2.372(4)
Ho(1)-O(16)	2.366(4)	Cu(2)-O(1)#2	2.372(4)
Ho(1)-O(18)	2.363(4)	Cu(1)-O(7)	2.140(4)
Ho(1)-O(14)	2.341(4)	Cu(1)-O(6)	1.945(4)
Ho(1)-O(13)	2.333(4)	Cu(1)-O(8)	1.937(4)
Ho(1)-O(17)	2.296(4)	Cu(1)-O(5)	1.986(5)
Cu(3)-O(12)	1.940(4)	Cu(1)-N(1)	2.025(5)
Cu(3)-O(11)	1.930(4)	O(3)-N(4)	1.293(6)
Cu(3)-O(4)#1	2.583(4)	O(2)-N(3)	1.298(6)
Cu(3)-O(4)	2.583(4)	O(4)-N(5)	1.278(7)
Cu(2)-O(9)#2	1.940(4)	O(1)-N(2)	1.264(7)
Cu(2)-O(9)	1.940(4)		()
Angles			
O(3)-Ho(1)-O(16)	137.62(15)	O(11)-Cu(3)-O(12)	92.98(17)
O(3)-Ho(1)-O(18)	69.80(13)	O(11)#1-Cu(3)-O(12)	87.02(17)
O(2)-Ho(1)-O(3)	82 45(13)	O(11)-Cu(3)-O(11)#1	180
O(2)-Ho(1)-O(16)	135.01(15)	O(11)-Cu(3)-O(4)#1	97.47(16)
O(2)-Ho(1)-O(18)	72.26(13)	O(11)#1-Cu(3)-O(4)	97.47(16)
$O(15)-H_0(1)-O(3)$	83 75(14)	O(11)-Cu(3)-O(4)	82,53(16)
O(15)-Ho(1)-O(2)	$146\ 00(14)$	O(4)#1-Cu(3)-O(4)	180
$O(15)-H_0(1)-O(16)$	72 43(15)	O(9)-Cu(2)-O(9)#2	180
O(15)-Ho(1)-O(18)	73 83(13)	O(9)#2-Cu(2)-O(1)#2	87 94(17)
O(15)-Ho(1)-O(14)	142 06(15)	O(9)#2-Cu(2)-O(1)	92.06(17)
$O(15)-H_0(1)-O(13)$	88 23(15)	O(9)-Cu(2)-O(1)	87 94(17)
O(15)-Ho(1)-O(17)	88 50(16)	O(10)#2-Cu(2)-O(9)#2	92.60(19)
O(18)-Ho(1)-O(16)	131 59(13)	O(10)-Cu(2)-O(9)	92 60(19)
O(14)-Ho(1)-O(3)	119 24(14)	O(10)-Cu(2)-O(9)#2	87 40(19)
O(14)-Ho(1)-O(2)	70.97(16)	O(10)-Cu(2)-O(10)#2	180
O(14)-Ho(1)-O(16)	70,58(15)	O(10)#2-Cu(2)-O(1)	81.5(2)
O(14)-Ho(1)-O(18)	140 13(16)	O(10)-Cu(2)-O(1)	98 5(2)
O(13)-Ho(1)-O(3)	71 61(13)	O(10)#2-Cu(2)-O(1)#2	98.5(2)
O(13)-Ho(1)-O(2)	116 25(13)	O(1)-Cu(2)-O(1)#2	180
$O(13)-H_0(1)-O(16)$	73 08(15)	O(6)-Cu(1)-O(7)	87 17(19)
O(13)-Ho(1)-O(18)	138 78(14)	O(6)-Cu(1)-O(5)	90.8(2)
O(13)-Ho(1)-O(14)	73 29(17)	O(6)-Cu(1)-N(1)	92.79(19)
O(17)-Ho(1)-O(3)	142.84(14)	O(8)-Cu(1)-O(7)	89 74(18)
$O(17)-H_0(1)-O(2)$	84 08(15)	O(8)-Cu(1)-O(6)	174 27(19)
$O(17)-H_0(1)-O(16)$	72.31(17)	O(8)-Cu(1)-O(5)	85 5(2)
O(17)-Ho(1)-O(18)	73.13(14)	O(8)-Cu(1)-N(1)	92.75(19)
O(17)-Ho(1)-O(14)	88 24(16)	O(5)-Cu(1)-O(7)	107.0(2)
O(17)-Ho(1)-O(13)	$144\ 57(15)$	O(5)-Cu(1)-N(1)	144.9(2)
O(12)#1-Cu(3)-O(12)	180	N(1)-Cu(1)-O(7)	108.0(2)
O(12)-Cu(3)-O(4)	78.50(16)	$N(4)-O(3)-H_0(1)$	138.7(3)
O(12)#1-Cu(3)-O(4)	101.50(16)	$N(3)-O(2)-H_0(1)$	136.6(4)
O(12)#1-Cu(3)-O(4)#1	78.50(16)	N(5)-O(4)-Cu(3)	143.8(4)
O(11)-Cu(3)-O(12)#1	87.02(17)	N(2)-O(1)-Cu(2)	147.3(5)
O(11)#1-Cu(3)-O(12)#1	92.98(17)		(0)

Table S3. Selected bond lengths [Å] and angles [°] for **3**.

#1 -x,-y+1,-z #2 -x+1,-y+1,-z

Compound	SAPR-8	TDD-8	JBTPR-8	BTPR-8	JSD-8
1 Gd	2.090	1.884	1.540	0.771	3.718
2 Tb	2.059	1.792	1.526	0.754	3.689
3 Ho	2.134	1.918	1.474	0.744	3.712

Table S4. SHAPE analysis for the Ln coordination spheres for 1-3.

SAPR-8: Square antiprism; TDD-8: Triangular dodecahedron; JBTPR-8: Biaugmented trigonal prism J50; BTPR-8: Biaugmented trigonal prism; JSD-8: Snub diphenoid J84.

Fig. S1 Powder X-ray diffraction patterns of complexes 1-3.

Fig. S2 One-dimensional structure of **1** and local coordination geometry of Gd(III) ion (Fluorine and Hydrogen atoms are omitted for the sake of clarity).

Fig. S3 One-dimensional structure of **3** and local coordination geometry of Ho(III) ion (Fluorine and Hydrogen atoms are omitted for the sake of clarity).

Fig. S4 Packing arrangement of the chains in 1 (H and F atoms are omitted for clarity).

Fig. S5 Packing arrangement of the chains in 2 (H and F atoms are omitted for clarity).

Fig. S6 Packing arrangement of the chains in 3 (H and F atoms are omitted for clarity).

Fig. S7 Plot of magnetization vs field for 1 at 2 K. The blue line is the calculated curve using Magpack program, and the red line shows the theoretical behavior for one S = 7/2 and four S = 1/2 non-coupled spins (see the text).

Fig. S8 Plot of magnetization vs field for 2 at 2 K.

Fig. S9 Compound **3**: (a) $\chi_M T = f(T)$ for susceptibility data obtained in a field of 50 Oe (in red) and 1 kOe (in blue); (b) magnetization *vs* field at 2 K, 3 K, 4 K and 5 K; (c) $\ln(\chi_M T) = f(1/T)$ and best fit of the linear section between 2.5 and 5 K.

Fig. S10 Temperature dependence of in phase (χ') and out of phase (χ'') of 1 in 0 Oe dc field with an oscillation of 3 Oe.

Fig. S11 Temperature-dependent ac signals under a zero dc field for compound 2.

Fig. S12. Compound **3**: χ_{M}' and $\chi_{M}'' = f(T)$ in zero and 1 kOe dc field between 2-10 K.