Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers This journal is © The Royal Society of Chemistry 2018

## Electronic Supplementary Material

## Excellent lightweight carbon-based microwave absorbers derived from metal-organic frameworks with tunable electromagnetic properties

Weihua Gu,<sup>a</sup> Jing Zheng,<sup>b</sup> Xiaohui Liang,<sup>a</sup> Xiaoqing Cui,<sup>a</sup> Jiabin Chen,<sup>a</sup> Zhu zhang,<sup>a</sup> Guangbin Ji<sup>a,\*</sup>

a College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China

b Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China

\* **Corresponding to:** gbji@nuaa.edu.cn, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China

The number of Pages, Figures, and Tables are 7, 5, 1, respectively.



Fig. S1. XRD pattern of MIL-53(Fe) precursor.



Fig. S2. (a) Fe and (b) C element EDS mapping of S750 sample. (c) EDS of S750.



Fig. S3. Cole-Cole curves of (a) S450, (b) S550, (c) S650 and (d) S750/paraffin composites.



Fig. S4. M–H loops of (a) S450, (b) S550 and (c) S750 measured at room temperature.



Fig. S5. Reflection loss values versus frequency of (a) S450, (b) S550 and (c) S750.

## The operation of Gibbs free energy part:

The transformation reaction from Fe<sub>3</sub>O<sub>4</sub> crystal to Fe<sub>3</sub>C crystal can be showed as:<sup>1, 2</sup>

$$Fe_3O_4 + C \rightarrow Fe_3C + 2O_2 \tag{1}$$

$$\Delta G_{T}^{\theta} = \Delta H_{T}^{\theta} - T \Delta S_{T}^{\theta}$$
<sup>(2)</sup>

$$d\Delta S_{T}^{\theta} = (\Delta C p/T) dT$$
(3)

Based on practical inorganic thermodynamic data manual, we can draw a table as following.

**Table. S1.** Gibbs free energy of the materials. ( $\Delta G$ : J/mol)

| Temperature     | $\Delta G(Fe_3O_4)$ | $\Delta G(C)$ | $\Delta G(Fe_3C)$ | $\Delta G(O_2)$ | $\Delta G(reaction)$ |
|-----------------|---------------------|---------------|-------------------|-----------------|----------------------|
| 900K (≈600 °C)  | 226.083             | 167.053       | 151.687           | 109.255         | 195.571              |
| 1000K (≈700 °C) | 241.034             | 168.555       | 160.119           | 110.017         | -28.65               |

According to the classical algorithm:  $\Delta G(T) = \Delta G(T_1) + \frac{\Delta G(T_2) - \Delta G(T_1)}{T_2 - T_1} \times (T - T_1)$ , where  $T_1$  and  $T_2$  stand for known temperature,  $\Delta G$  means Gibbs free energy. We set T<sub>1</sub>=600 °C, T<sub>2</sub>=700 °C and  $\Delta G$ =0, then the T value can be calculated as 689 °C via utilizing the relevant data in the above table.

1. Z. Lou, C. Yuan, Y. Zhang, Y. Li, J. Cai, L. Yang, W. Wang, H. Han and J. Zou, Synthesis of porous carbon matrix with inlaid Fe<sub>3</sub>C/Fe<sub>3</sub>O<sub>4</sub> micro-particles as an effective electromagnetic wave absorber from natural wood shavings. J. Alloys Compd., 2019, 775, 800-809.

2. J. Marques, A. Costa, C. Pereira, Gibbs free energy ( $\Delta G$ ) analysis for the Na-O-H (sodium-oxygenhydrogen) thermochemical water splitting cycle. Int. J. Hydrogen energy, 2019, 44, 14536-14549.