High-efficiency photocatalytic water splitting by N-doped porous g-C₃N₄ nanosheets polymer photocatalyst derived from urea and N,Ndimethylformamide

Supporting Information

Feng Guo,^a Lijing Wang,^b Haoran Sun,^a Mingyang Li,^c Weilong Shi,^{c*}

^a School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China;

^bHenan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College

of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, PR, China.

^c School of Material science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR. China;

*Corresponding author's E-mail address: shiwl@just.edu.cn (W. L. Shi).

1. Characterization methods

Powder X-ray diffraction (XRD) data were performed on an X'Pert-Pro MPD (Holand) D/max-yA Xray diffractometer with Cu K α radiation (λ =0.154178 nm), Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet-360 spectrometer. X-ray photoelectron spectroscopy (XPS) measurements and valence-band XPS were carried out on an ARL Quant X-ray photoelectron spectrometer using Al Ka Xray (hv = 1486.6 eV). The morphologies and microstructures of the composites were examined by field emission scanning electron microscopy (FESEM, JSM-6360LV) and Transmission electron microscopy (TEM, FEI-Tecnai F20). Solid-state 13C magic angle spinning (MAS) NMR measurements were carried out on a Bruker AVANCE III 400 MHz WB solid-state NMR spectrometer at room temperature. The Raman spectra were tested on (HR 800 Raman). The room-temperature electron paramagnetic resonance (EPR) spectra were conducted on Electron Paramagnetic Resonance Spectrometer (BRUKER A300-10/12). The optical properties of samples were tested by a UV-vis spectrophotometer (UV-2450). Photoluminescence (PL) spectra of samples were tested by a RF-5301PC luminescence spectrometer with emission wavelength of 325 nm. The Time-resolved transient PL decay measurements were carried out by a fluorescence spectrophotometer (FLSP-920, Edinburgh Instruments). The specific surface area and poresize distribution test were performed a Micromeritics ASAP-2050 porosimeter. The surface photovoltage (SPV) measurement was carried out on a surface photovoltage spectroscopy (CEL-SPS 1000, Beijing

Perfect Light Technology Co., Ltd). The photocurrent and the electrochemical impedance spectra (EIS) were tested using CHI 660b workstation in a 0.5 M Na₂SO₄ solution with a typical three-electrode system.

2. Computational methods

All calculations were carried out using first-principles study based on the DFT within the projector augmented wave method (PAW), as implemented in Vienna ab initio simulation package (VASP) [S1, 2]. The generalized gradient approximation (GGA) with the functional of Perdew-Burke-Ernzerh of (PBE) was employed to describe the electron exchange-correlation interactions with the vdw-DF approach to take into account the long-range van der Waals interaction [S3, 4]. In this case, a supercell of $2 \times 2 \times 1$ was used to simulate 2D g-C₃N₄ monolayers. The slab was built along the *z*-axis and a vacuum spacing of 20 Å was used to avoid the interaction between the sheets. The structures were relaxed without any symmetry constraints with a cutoff energy of 500 eV. The convergence criteria of energy and force were set to 1×10^{-5} eV and 0.01 eV/Å, respectively. Reciprocal space was represented by a Monkhorst-Pack special *k*-point scheme with $5 \times 5 \times 1$ for geometry optimization.

3. Figures and Tables

Fig.S1 Digital photograph of as-prepared photocatalysts grains.

Fig.S2 The weight-dependent hydrogen evolution reaction of CNU-DMF₁₀.

Table S1 N 1s peak area ratio of N	-N, C-N=	=C, N3c and N-H ₂	in the CNU and	CNU-DMF ₁₀
---	----------	------------------------------	----------------	-----------------------

	C-N=C (%)	N _{3C} -low binding energy (%)	N _{3C} -high binding energy (%)	-NH ₂ /N-N (%)
CNU	57.78	26.82	12.53	2.87
CNU-DMF ₁₀	57.19	24.89	14.06	3.86

Table S2 Peak area of XPS spectra N and C of and CNU CNU-DMF.

		CNU		
	Area (P) CPS. eV	Area (N) TPP-2M	Atomic %	N/C ratio
C 1s	19502.6	0.25	42.65	1.34
N 1s	42452.1	0.33	57.35	
CNU-DMF ₁₀				
	Area (P) CPS. eV	Area (N) TPP-2M	Atomic %	N/C ratio
C 1s	19248.4	0.24	37.19	1.69
N 1s	52621.8	0.41	62.81	

Table S3 Hydrogen evolution rate of various N-doped g-C₃N₄ photocatalysts.

Photocatalysts	Light source	Reaction	H ₂ evolution rate	Ref
		conditions	$(\mu mol/g/h)$	

CNU-DMF ₁₀	300W Xe lamp, $\lambda > 400 \text{ nm}$	3 wt% Pt, TEOA (10 vol%)	5268	This work
Ultrathin porous N/g- C ₃ N ₄	300W Xe lamp, $\lambda > 420 \text{ nm}$	1 wt% Pt, Lactic acid (20 vol%)	3579	[85]
C_3N_{4+x}	300W Xe lamp, $\lambda > 400 \text{ nm}$	3 wt% Pt, TEOA (10 vol%)	553.5	[S6]
porous nitrogen–rich g-C ₃ N ₄	300W Xe lamp, $\lambda > 420 \text{ nm}$	3 wt% Pt, TEOA (20 vol%)	2700	[87]
nitrogen-rich g-C ₃ N ₄ nanosheets	$\begin{array}{c} 50.0 \text{ mW cm}^{-2} \\ \text{LEDS} \qquad \lambda \\ > 420 \text{ nm} \end{array}$	1 wt% Pt, Lactic acid (20 vol%)	310	[S8]

References

[S1] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B - Condensed Matter and Materials Physics, 54 (1996) 11169-11186.

[S2] P.E. Blöchl, Projector augmented-wave method, Physical Review B, 50 (1994) 17953-17979.[S3] J. Klimes, D.R. Bowler, A. Michaelides, Chemical accuracy for the van der Waals density functional, Journal of physics. Condensed matter : an Institute of Physics journal, 22 (2010) 022201.

[S4] J. Klimeš, D.R. Bowler, A. Michaelides, Van der Waals density functionals applied to solids, Physical Review B, 83 (2011).

[S5] N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T. Zhang, H. Huang, Precursor-reforming protocol to 3D mesoporous $g-C_3N_4$ established by ultrathin self-doped nanosheets for superior hydrogen evolution, Nano Energy, 38 (2017) 72-81.

[S6] J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution, J. Mater. Chem. A, 3 (2015) 13819-13826.

[S7] Y. Tang, M. Yuan, B. Jiang, Y. Xiao, Y. Fu, S. Chen, Z. Deng, Q. Pan, C. Tian, H. Fu, Inorganic acid-derived hydrogen-bonded organic frameworks to form nitrogen-rich carbon

nitrides for photocatalytic hydrogen evolution, J. Mater. Chem. A, 5 (2017) 21979-21985. [S8] X. Wu, D. Gao, P. Wang, H. Yu, J. Yu, NH₄Cl-induced low-temperature formation of nitrogen-rich g- C_3N_4 nanosheets with improved photocatalytic hydrogen evolution, Carbon, 153 (2019) 757-766.