Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supplementary Information

Temperature-regulated construction of hierarchical titanosilicate

zeolites

Yue Song, ‡^a Risheng Bai, ‡^a Yongcun Zou, ^a Zhaochi Feng,^b and Jihong Yu*^{ac}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^c International Center of Future Science, Jilin University, Changchun 130012, China

*Author to whom correspondence should be addressed. Email: jihong@jlu.edu.cn

Supplementary Figures and Tables

Figure S1. Photographs of the initial clear solution and the suspension formed at 80 °C for 1 day.

Figure S2. Pore size distributions of TS-1-H-80/120, TS-1-H-80/140, TS-1-H-80/170, and TS-1-C samples.

Figure S3. XRD patterns of as-made TS-1-H-80/120 sample and the corresponding calcined sample.

Figure S4. Thermogravimetric (TG) curves of the as-synthesized TS-1-H-80/120, TS-1-H-80/140, TS-1-H-80/170, and TS-1-C samples.

Figure S5. Higher-resolution transmission electron microscopy (HRTEM) images of the TS-1-H-80/120 sample.

Figure S6. ²⁹Si MAS NMR spectra of TS-1-H-80/120, TS-1-H-80/140, and TS-1-C samples.

Figure S7. High-angle annular dark field scanning transmission electron microscopy (HAADF STEM) image and elemental mappings for Si, O, and Ti elements of TS-1-H-80/120 sample.

Figure S8. FT-IR spectra of TS-1-H-80/120, TS-1-H-80/140, TS-1-H-80/170, and TS-1-C samples.

Figure S9. XRD pattern (a), N_2 adsorption and desorption isotherm (b), and UV-vis spectrum (c) of the fresh TS-1-H-80/120 sample (red line) and the sample after ten cycles in the oxidation of DBT (black line).

Figure S10. SEM (a) and TEM (b, c) images of the TS-1-H-80/120 sample after ten cycles in the oxidation of DBT.

Figure S11. XRD patterns (a), N_2 adsorption and desorption isotherms (b), and UV-Vis spectra (c) of the hierarchical TS-1-TPA-80/120 and conventional microporous TS-1-C samples.

Figure S12. SEM (a) and TEM (b, c) images of hierarchical TS-1-TPA-80/120 sample.

Figure S13. Catalytic oxidation of DBT with TBHP over microporous TS-1-C and hierarchical TS-1-TPA-80/120 samples. Reaction conditions: 10mL 500ppm model fuels, 60 °C, 30mg catalysts, n(DBT)/n(TBHP) was 0.5.

Samples	Si/Ti ^a	$\mathbf{S}_{\mathrm{BET}}^{b}$	S_{micro}^{c}	S_{ext}^{c}	V_{micro}^{c}	$\mathbf{V}_{\text{total}}^d$	V _{meso} ^e
		(m ² /g)	(m^{2}/g)	(m^{2}/g)	(cm ³ /g)	(cm^3/g)	(cm ³ /g)
TS-1-H-80/120	106	716	268	448	0.11	0.61	0.50
TS-1-H-80/140	103	597	346	251	0.14	0.44	0.30
TS-1-H-80/170	62	500	353	147	0.14	0.27	0.13
TS-1-C	60	485	310	175	0.12	0.28	0.16
TS-1-TPA-	105	5.57	368	189	0.15	0.55	0.40
80/120		557					
TS-1-H-80/120 ^f	191	641	262	379	0.11	0.65	0.54
TS-1-H-120 g	136	692	280	412	0.12	0.45	0.33

Table S1. Framework compositions and textural properties of the as-prepared zeolite samples.

^{*a*} Measured by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). ^{*b*} Specific surface area calculated from the nitrogen adsorption isotherm using the BET method. ^{*c*} S_{micro} (micropore area), S_{ext} (external surface area), and V_{micro} (micropore volume) calculated using the t-plot method. ^{*d*} Total pore volume at P/P₀ = 0.99. ^{*e*} V_{meso} = V_{total} – V_{micro}. ^{*f*} The sample was used after 10 catalytic reaction-regeneration cycle times. ^{*g*} TS-1-H-120 was synthesized with the same molar composition of the TS-1-H-80/120 sample by crystallization at 120 °C for 2 days.

Table S2. Compositional analyses of the as-synthesized samples.

	C (wt.%)	H (wt.%)	N (wt.%)	C/N
TS-1-H-80/120	14.0 a	2 1	0.82	19.9
	14.0 "	5.1	0.82	(Calc. 16 ^b)
TS-1-H-80/140	12.3	2.6	0.70	18.2
			0.79	(Calc. 16)
TS-1-H-80/170	11.6	2.4	0.72	18.5
	11.6		0.73	(Calc. 16)
TS-1-C	0.6	2.1	0.02	13.6
	9.0		0.82	(Calc. 12)

^{*a*} Elemental analysis was based on a C, H, N, S elemental analyses. ^{*b*} The ideal C/N atomic ratio of the OSDA molecules calculated in their cationic form.

		H ₂ O weight loss (%)	Template weight loss (%)	Template weight loss (%)	Total (wt. %)
TS-1-H-	Temperature (°C)	35-180	180-320	320-800	19.77
80/120	weight loss (%)	2.62	8.04	9.11	
TS-1-H-	Temperature (°C)	35-180	180-400	400-800	18.14
80/140	weight loss (%)	2.46	6.48	9.20	
TS-1-H-	Temperature (°C)	35-180	180-400	400-800	17.86
80/170	weight loss (%)	2.13	4.64	11.09	
TS-1-C	Temperature (°C) weight loss (%)	35-180 1.16	180-400 1.49	400-800 11.21	13.86

 Table S3. Thermogravimetric (TG) analyses of the as-synthesized samples.