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15N2 Isotope Labeling Experiments

An isotopic labeling experiment used 15N2 (98 atom % 15N) as the feed gas to clarify the 

source of ammonia. Before starting the test, labelled 15N2 gas was pre-purified through 

flowing into alkaline solution (pH=13 KOH aqueous solution) and acid solution (pH=1 

H2SO4 aqueous solution) to remove any N contamination in containing 15N2 solution. In 

the electrocatalytic N2 reduction experiment, Argon gas was purged to the cathodic cell to 

remove impurity and then purging for 30 min with the gas. After 15N2 electroreduction 

for 2 h at -0.4 V (vs. RHE) in a 0.1 M HCl solution, 50 mL of the electrolyte was taken 

out and concentrated to 1 mL. Afterwards, 0.5 mL of the resulting solution was taken out 

and mixed with 0.05 mL d6-DMSO for 1H nuclear magnetic resonance（NMR，

600MHz）measurement. Similarly, the amount of 14NH4
+ was quantitatively determined 

by this method when 14N2 (ultra-high-grade purity, 99.999%) was the feed gas.

Computational Details

All the calculations were performed using the plane wave-based density functional theory 

(DFT) based code VASP. [1] The basis sets with energy cutoff of 450 eV were used for 

our calculations. The projector-augmented wave (PAW) [2] with the generalized gradient 

approximation (GGA) refined by Perdew, Burke and Ernzerhof (PBE) [3] was used to 

describe the interaction between nuclei-electron and electron-electrons. An energy 

convergence of 1×10−5 eV was set to abort SCF process and a residue force less than 0.02 

eV Å−1 was used for geometric optimization process. NRR processes on Bi (012), Bi 

(104), and Bi (110) were investigated and the vacuum layer was set as 15 Å in order to 



eliminate the interactions between layers and their neighboring layers. Bi (012), Bi (104) 

and Bi (110) were modelled by four-layer (2×2) supercells. During the geometric 

optimization processes, the bottom two layers of all the structures are fixed at their bulk 

position. While, only adsorbed surface species are relaxed to calculate the vibrational 

frequency required for zero-point energy (ZPE) correction and the calculation of 

vibrational entropy. The Monkhorst–Pack grids of 4 × 4 × 1, 3 × 4 × 1 and 3 × 3 × 1 were 

adopted for Bi (012), Bi (104) and Bi (110) surfaces, respectively. 

The reaction Gibbs free energy (∆G) of each elementary steps along NRR processes 

were obtained by ∆G = ∆E + ∆ZPE −T∆S + ∆GpH + ΔGU, where ∆E is the reaction 

energy difference between the product and reactant directly obtained from DFT 

calculations, ΔZPE and ∆S are the change in zero point energies and entropy at 298.15 K 

(T = 298.15 K), ∆GpH is the free energy correction of pH, which can be calculated by 

∆GpH = kBT × pH × 2.303, and the pH value was set to be zero in this work. ΔGU is the 

free energy contribution related to electrode potential U.
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Figure S1. SEM image of (a) MB@PC-600 and (b) MB@PC-800



Figure S2. (a-c) TEM images taken of MB@PC-600, (d-f) EDX elemental mapping images of 

MB@PC-600.



Figure S3. (a-c) TEM images taken of MB@PC-800, (d-f) EDX elemental mapping images of 

MB@PC-800.



Figure S4. XPS survey spectra of MB@PC-600, MB@PC-700 and MB@PC-800.



     Figure S5.  XPS spectrum for MB@PC-700 in the C 1s region.



Figure S6. N2-TPD curve of MB@PC-700.



  

Figure S7. Image of the apparatus for NRR measurement.



Figure S8. UV-Vis absorption curves of various concentrations of NH3 stained with indophenol 

indicator and incubated for 2 h at room temperature; (b) calibration curve used for calculation of NH3 

concentrations; (c) the chromogenic reaction of indophenol indicator with NH3.



Figure S9. LSV curves of MB@PC-600, MB@PC-700, MB@PC-800 and carbon paper in N2 

saturated 0.1 M HCl solution.



Figure S10. (a) UV-Vis absorption spectra of electrolytes stained with indophenol indicator after NRR 

electrolysis for MB@PC-T (T refers different temperatures, such as 600, 700 and 800 ℃) at -0.5 V 

for 2 h at N2 atmosphere; (b) Corresponding NH3 yields and FEs of MB@PC-T. 



Figure S11. Electrochemically active surface area measurement. (a1-d1) Cyclic voltammograms of 

different samples at various scan rates from 10 to 110 mV s-1 in the potential range between -0.02 and 

-0.12 V; (a2-d2) The capacitive current density difference at -0.07 V plotted & scan rate for different 

catalysts.



Figure S12. Electrochemical impedance spectra of MB@PC-600, MB@PC-700, MB@PC-800 and 

carbon paper at -0.5 V in N2 saturated 0.1 M HCl.



Figure S13. (a) UV-vis absorption spectra of the electrolytes stained with indophenol indicator after 

electrolysis under various conditions (N2-saturated and Ar-saturated over MB@PC-700/CP at -0.50 V 

for 2 h; open circuit potential in N2-saturated solution over MB@PC-700/CP for 2 h; carbon paper in 

N2-saturated solution at -0.50 V for 2 h ). (b) Corresponding NH3 yields of MB@PC-700/CP and 

carbon paper (carbon paper mass: 8 mg), respectively.



Figure S14. (a) UV-Vis curves of various concentrations of N2H4 stained with p-C9H11NO indicator 

and incubated for 20 min at room temperature. (b) Calibration curve used to calculate the 

concentrations of N2H4. (c) the chromogenic reaction of p-C9H11NO indicator with N2H4.



Figure S15. UV-Vis absorption spectra of the electrolytes stained with p-C9H11NO indicator after 2h 

electrolysis using MB@PC-700 at a series of potentials (-0.3 to -0.7V).



Figure S16. (a) Chronoamperometry curves and (b) UV-Vis absorption curves of MB@PC-700 at -

0.5 V for 8 cycles.
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Figure S17: Stability test for MB@PC-700 during repeated NRR processes at -0.5 V





Figure S18. Long-term chronoamperometry curve of MB@PC-700 catalysts at -0.5 V.



Figure S19: the XPS pattern of MB@PC-700 catalyst before and after long-term NRR testing , (a) 

survey, (b) Bi 4f, (c) C1s. 



Figure S20: Free energy diagram of N2 hydrogenation via alternating pathway on Bi (012) (a), Bi 

(104) (b) and Bi (110) (c) surface. Blue dashed lines show the hydrogenation processes from NHNH. 



Figure S21: Minimum energy pathways of the hydrogenation of N2 into NHNH via N2+2*H→ 

NHNH on Bi(104) (a) and Bi(110) (b)surface.

Figure S22: Work function diagram of Bi (012), Bi (104), Bi(110) surfaces and graphene represented 

graphite based carbon material.



Table S1. Summary of the representative reports on electrocatalytic N2 

fixation under ambient conditions

Catalysts Electrolyte NH3 yield FE (%) Reference

MB@PC-700 0.1 M HCl 28.63 μg · h−1 · mg−1
cat. 10.58 This work

Bi4V2O11/CeO2 0.1 M HCl 23.21 μg · h−1 · mg−1
cat. 10.16 S1

 Bi NS/CF 0.1 M HCl 5.26 μg · h−1 · mg−1
cat. 10.26 S2

Bi NS 0.1 M Na2SO4 13.23 μg · h−1 · mg−1
cat. 10.49 S3

β-Bi2O3 
nanoflower 0.1 M Na2SO4 19.92 μg · h−1 · mg−1

cat. 4.3 S4

defect-rich Bi 
nanoplates 0.2 M Na2SO4 5.453 μg · h−1 · mg−1

cat. 11.68 S5

MBN 0.1 M Na2SO4 18.2 μg · h−1 · mg−1
cat. 5.5 S6

MoS2–rGO 0.1 M LiClO4 24.82 μg · h−1 · mg−1
cat. 4.58 S7

TiO2/Ti3C2Tx 0.1 M HCl 26.32 μg · h−1 · mg−1
cat. 8.42 S8

O-KFCNTs 0.1 M HCl 25.12 μg · h−1 · mg−1
cat. 5.7 S9

Ti3C2Tx
nanosheet 0.1 M HCl 20.4 μg · h−1 · mg−1

cat. 9.3 S10

N-doped porous
carbon 0.05 M H2SO4 23.8 μg · h−1 · mg−1

cat. 1.4 S11

O-CN/CP 0.1 M HCl 20.15 μg · h−1 · mg−1
cat. 4.97 S12

NPC 0.1 M HCl 23.8 μg · h−1 · mg−1
cat. 1.42 S13

MoO3 0.1 M HCl 29.43 μg · h−1 · mg−1
cat. 1.9 S14

N-doped carbon 0.1 M HCl 15.7 μg · h−1 · mg−1
cat. 1.45 S15



PCN 0.1 M HCl 8.09 μg · h−1 · mg−1
cat. 11.59 S16

Au-TiO2 0.1 M HCl 21.4 μg · h−1 · mg−1
cat. 8.11 S17

α-Au/CeOx-RGO 0.1 M HCl 8.31 μg · h−1 · mg−1
cat. 10.1 S18

Ru NPs 0.01 M HCl 21.4 μg · h−1 · mg−1
cat. 5.4 S19

Table S2: The Gibbs free energy of the hydrogenation of N2 to *NNH (ΔG*NNH), the 

adsorption free energy (ΔG*H) of atomic hydrogen and the energy barrier of N2 

hydrogenation (Ea,NHNH )to NHNH on neutral and positively charged Bi(012), Bi(104) 

and Bi(110) surfaces. 

Bi (012) (012)+ (104) (104)+ (110

)

(110)

+

ΔG*NNH(eV

)

2.62 2.20 1.88 1.87 2.00 2.10

ΔG*H(eV) 0.81 0.76 0.57 0.62 0.64 0.67

Ea,NHNH(eV) 0.71 0.70 1.18 1.20 1.29 1.28
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