Supporting Information for

Asymmetric seven-/eight-step spin-crossover in a

three-dimensional Hofmann-type metal-organic framework

Yuan-Yuan Peng, Si-Guo Wu, Yan-Cong Chen, Wei Liu, Guo-Zhang

Huang, Zhao-Ping Ni* and Ming-Liang Tong*

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510275, P. R. China

Table of Contents

Table S1. Spin transition temperatures from magnetic data andexothermic/endothermic peaks in DSC.

Table S2. The HS:LS ratios, $\chi_M T$ and γ_{HS} values of the asymmetric seven/eight-step spin transition with eleven states in the cooling and warming modes.

Table S3. Crystal data and structural refinement for **1Au** at different temperatures in the cooling mode.

Table S4. Crystal data and structural refinement for **1Au** at different temperatures in the warming mode.

Table S5. Selected structural parameters for 1Au at different temperatures in the cooling mode.

Table S6. Selected structural parameters for 1Au at different temperatures in the warming mode.

Table S7. Hydrogen-bonding interactions for 1Au at different temperatures in the cooling mode.

Table S8. Hydrogen-bonding interactions for 1Au at different temperatures in the warming mode.

Table S9. Selected structural parameters for **1Au** and **1Ag** in the HS and LS states.

Table S10. Selected Fe-N bond lengths [Å], N-Fe-N and Fe-N-C angles [°] for **1Au** and **1Ag** at 240 K.

Table S11. Selected Hydrogen-bonding interactions for 1Au and 1Ag at 240 K.

Figure S1. Variable-temperature magnetic susceptibility for 1Au at different scan rates.

Figure S2. Variable-temperature magnetic susceptibility with two consecutive cycles for 1Au at 2 K min⁻¹.

Figure S3. The first derivative curve of the magnetic susceptibility at 2 K min⁻¹ for **1Au** on cooling and heating.

Figure S4. Variable-temperature magnetic susceptibility for 1Au at 2 K min⁻¹ in different range of temperatures to traverse each intermediate state.

Figure S5. DSC curves with three consecutive cycles for 1Au at 10 K min⁻¹.

Figure S6. DSC curves for 1Au at 2 K min⁻¹, 4 K min⁻¹, and 10 K min⁻¹.

Figure S7. DSC curve for 1Au at 2 K min⁻¹.

Figure S8. Thermogravimetric analysis of 1Au.

Figure S9. Powder X-ray diffraction of 1Au.

Figure S10. Asymmetric units of 1Au at different temperatures.

Figure S11. Arrangement of two unique Fe(II) sites within one Hofmann layer, one set of 3D framework and twofold-interpenetrated 3D framework at 158 K.

Figure S12. Arrangement of four unique Fe(II) sites within one Hofmann layer, one set of 3D framework and twofold-interpenetrated 3D framework at 174 K.

Figure S13. Hydrogen-bonding interactions in 1Au at 158 K, 174K, and 240 K.

Figure S14. SEM and SEM-EDS spectra of molecular alloys.

Figure S15. Thermal dependence of $\chi_M T$ at 0.5 K min⁻¹ for 1Au, 1Ag_{0.26}Au_{1.74}, 1Ag_{0.82}Au_{1.18}, 1Ag_{1.38}Au_{0.62} and 1Ag.

	Scan rate	Mode		step						
	K min ⁻¹		1	2	3	4	5	6	7	8
$\chi_{ m M}T$	0.5	$T_{ m c}\downarrow$	181	174	163	157	125	113	103	_
	0.5	$T_{ m c}\uparrow$	182	177	172	168	151	145	120	99
	10	$T_{c}\downarrow$	182	174	162	159	124	118	102	_
DSC	10	$T_{ m c}\uparrow$	183	177	173	168	145		123	105
DSC	2	$T_{ m c}\downarrow$	181	173	162	158	124	108	_	_
	Δ	$T_{ m c}\uparrow$	183	177	172	167	149	146	121	106

Table S1. Spin transition temperatures from magnetic data and exothermic/endothermic peaks
 in DSC.

Table S2. The HS:LS ratios, $\chi_M T$ (cm³ K mol⁻¹) and γ_{HS^a} values of the asymmetric seven/eight-step spin transition with eleven states in the cooling and warming modes.

state	1	2	3	4	5	6	7	8	9	10	11
HS:LS↓	1:0	9:1	3:1		2:1	1:1	_	3:7	1:4	_	0:1
$\chi_{ m M}T\downarrow$	3.57	3.23	2.71	_	2.41	1.85	_	1.16	0.81	—	0.12
γнs↓	1.0	0.90	0.75		0.66	0.50		0.30	0.2		0
HS:LS↑	1:0	9:1	3:1	7:3		1:1	2:3	3:7	—	1:39	0:1
$\chi_{ m M}T$ \uparrow	3.57	3.23	2.71	2.54		1.87	1.51	1.16	—	0.21	0.12
γнs ↑	1	0.90	0.75	0.70		0.51	0.40	0.30		0.026	0

^{*a*} $\gamma_{HS} = (\chi - \chi_{LS})/(\chi_{HS} - \chi_{LS})$, where χ_{HS} and χ_{LS} are 3.57 and 0.12 cm³ K mol⁻¹, respectively.

Temperature/K	85(2)	109(2)	121(2)	143(2)	161(2)	168(2)	178(2)
chemical formula	$C_{24}H_{30}Au_2FeN_{12}O_3$	$C_{48}H_{60}Au_4Fe_2N_{24}O_6$	$C_{96}H_{120}Au_8Fe_4N_{48}O_{12}$	C48H60Au4Fe2N24O6	$C_{48}H_{60}Au_4Fe_2N_{24}O_6$	$C_{96}H_{120}Au_8Fe_4N_{48}O_{12}$	$C_{48}H_{60}Au_4Fe_2N_{24}O_6$
Mr	984.38	1968.76	3937.52	1968.76	1968.76	3937.52	1968.76
crystal system	monoclinic	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic
space group	C2/c	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$
a/Å	31.6317(12)	15.8341(16)	30.0968(12)	16.0665(15)	16.1959(3)	31.0145(8)	16.4567(11)
$b/{ m \AA}$	12.7723(5)	12.8227(13)	12.8222(5)	12.8303(13)	12.8342(3)	12.8404(3)	12.8426(9)
$c/{ m \AA}$	15.7074(4)	17.0691(18)	17.0738(7)	17.0485(17)	17.0951(4)	17.0864(4)	17.1057(12)
$\alpha /^{\circ}$	90	111.993(3)	68.1250(10)	111.797(3)	111.9735(17)	68.053(2)	112.009(2)
$eta/^{\circ}$	113.5720(10)	68.555(3)	79.568(2)	68.931(3)	69.1649(17)	79.568(2)	69.760(2)
$\gamma/^{\circ}$	90	89.991(3)	77.8270(10)	89.988(3)	89.9956(17)	78.083(3)	89.949(2)
$V/Å^3$	5816.4(4)	2953.0(5)	5938.7(4)	3008.5(5)	3043.23(12)	6134.7(3)	3109.2(4)
Ζ	8	2	2	2	2	2	2
μ (Mo K α)/mm ⁻¹	20106	77872	78757	73519	53664	108522	76866
reflns collected	6167	13679	26182	13979	15877	32037	14422
indep reflns	0.0343	0.0883	0.0433	0.0897	0.0587	0.0679	0.0743
R _{int}	0.0323	0.0775	0.0801	0.1187	0.0650	0.1028	0.0384
$R_I^{\rm a}(I>2\sigma(I))$	0.0743	0.1741	0.1686	0.2630	0.1257	0.1842	0.0860
wR_2^{b} (all data)	0.0785	0.1877	0.1779	0.2730	0.1330	0.2071	0.0959
GOF	1.043	1.136	1.164	1.262	1.223	1.103	1.024

Table S3. Crystal data and structural refinement for 1Au at different temperatures in the cooling mode.

 ${}^{a}R_{1} = \sum |F_{o}| - |F_{c}|| / \sum |F_{o}|; {}^{b}wR_{2} = \{ [\sum w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}$

Temperature/K	105(2)	134(2)	158(2)	170(2)	174(2)	180(2)	240(2)
chemical formula	$C_{48}H_{60}Au_4Fe_2N_{24}O_6$	C96H120Au8Fe4N48O12	$C_{48}H_{60}Au_4Fe_2N_{24}O_6$	C96H120Au8Fe4N48O12	C96H120Au8Fe4N48O12	$C_{48}H_{60}Au_4Fe_2N_{24}O_6$	$C_{24}H_{30}Au_2FeN_{12}O_3$
Mr	1968.76	3937.52	1968.76	3937.52	3937.52	1968.76	984.38
crystal system	triclinic	triclinic	triclinic	triclinic	triclinic	triclinic	monoclinic
space group	ΡĪ	ΡĪ	ΡĪ	ΡĪ	ΡĪ	ΡĪ	C2/c
a/Å	15.8694(3)	30.1367(18)	16.0777(9)	30.948(2)	31.028(2)	16.4434(10)	31.8296(12)
b/Å	12.7869(3)	12.8338(8)	12.8480(8)	12.8483(10)	12.8539(9)	12.8355(8)	12.8950(5)
$c/{ m \AA}$	17.0710(4)	17.0959(10)	17.0631(10)	17.1223(13)	17.1305(12)	17.1073(11)	16.4738(6)
$\alpha/^{\circ}$	111.9669(19)	67.9813(19)	111.6978(18)	67.991(2)	67.964(2)	112.050(2)	90
$eta/^{\circ}$	68.5105(13)	79.4822(19)	68.8685(17)	91.517(2)	79.519(2)	69.750(2)	112.0410(10)
γ/°	90.0188(12)	77.8143(19)	90.0458(19)	78.046(2)	78.084(2)	89.9829(19)	90
$V/\text{\AA}^3$	2951.50(12)	5952.6(6)	3018.8(3)	6134.4(8)	6155.5(7)	3104.3(3)	6267.4(4)
Ζ	2	2	2	2	2	2	8
μ (Mo K α)/mm ⁻¹	10.451	10.364	10.218	10.057	10.023	9.937	9.844
reflns collected	49671	89478	38309	187272	188005	79130	33434
indep reflns	15035	27215	13728	28187	28292	14277	7720
R _{int}	0.1106	0.0931	0.0703	0.0532	0.0516	0.1271	0.0530
$R_I^{\rm a}(I>2\sigma(I))$	0.0641	0.0834	0.0823	0.0786	0.0848	0.0755	0.0355
wR_2^{b} (all data)	0.1552	0.1912	0.1967	0.1568	0.1728	0.2077	0.0849
GOF	1.054	1.077	1.194	1.134	1.158	1.127	1.057

 Table S4. Crystal data and structural refinement for 1Au at different temperatures in the warming mode.

^{*a*} $R_1 = \sum |F_0| - |F_c|| / \sum |F_0|; {}^{b} w R_2 = \{ [\sum w (F_0^2 - F_c^2)^2] / \sum [w (F_0^2)^2] \}^{1/2}$

Parameter	85 K	109 K	121 K	143 K	161 K	168 K	178 K
<fe–n>^a</fe–n>	1.965(5)	<fe1-n> 1.999(15)</fe1-n>	<fe1-n> 1.990(13)</fe1-n>	<fe1-n> 1.998(2)</fe1-n>	<fe1-n> 2.080(9)</fe1-n>	<fe1–n> 2.111(19)</fe1–n>	2.154(6)
		<fe2-n> 2.012(15)</fe2-n>	<fe2-n>1.970(12)</fe2-n>	<fe2–n> 2.123(2)</fe2–n>	<fe2–n> 2.106(9)</fe2–n>	<fe2–n> 2.078(19)</fe2–n>	2.154(6)
			<fe3–n>1.986(14)</fe3–n>			<fe3–n> 2.093(15)</fe3–n>	
			<fe4–n> 2.119(15)</fe4–n>			<fe4–n> 2.177(15)</fe4–n>	
$Au{\cdots}Au^{\rm b}$	3.1883(5)	3.2028(10)	3.2026 (10)	3.2141(15)	3.2292(6)	3.2481(11)	3.2477(5)
	3.0160(4)	3.0269(9)	3.2138 (9)	3.0361(14)	3.0413(5)	3.2075(13)	3.0598(4)
			3.0212 (8)			3.0490(11)	
			3.0321 (9)			3.0467(10)	
Fe…Fe ^c	14.5766(5)	14.6405(16)	14.6039(5)	14.7179(15)	14.7782(4)	14.7782(6)	14.8917(10)
		14.6404(16)	14.6116(5)	14.7186(15)	14.7803(4)	14.7805(6)	14.890(1)
			14.7243(5)			14.8517(6)	
			14.7216(5)			14.8496(6)	
$Fe \cdots Fe^d$	10.1219(2)	10.1850(8)	10.1486(3) 10.2645(3)	10.2711(8)	10.3276(2)	10.3439(4) 10.3306(4)	10.4463(5)
	10.1229(2)	10.1917(8)	10.1379(3) 10.2878(3)	10.2825(8)	10.3280(2)	10.3159(4) 10.3233(4)	10.4395(5)
		10.1884(8)	10.1510(3) 10.2796(3)	10.2918(8)	10.3373(2)	10.4076(4) 10.4097(4)	10.4375(5)
		10.1848(8)	10.1419(3) 10.2947(3)	10.2762(8)	10.3369(2)	10.4121(4) 10.4384(4)	10.4262(5)
$\Sigma \mathrm{Fe}^\mathrm{e}$	19.3(2)	ΣFe1 18.5(5)	ΣFe1 21.1(5)	ΣFe1 19.3(9)	ΣFe1 20.1(3)	ΣFe1 22.8(6)	ΣFe1 20.2(2)
		ΣFe2 22.5(5)	ΣFe2 18.3(5)	ΣFe2 19.8(8)	ΣFe2 20.6(3)	ΣFe2 18.4(7)	ΣFe2 19.1(2)
			ΣFe3 19.8(5)			ΣFe3 21.3(7)	
			ΣFe4 19.7(5)			ΣFe4 22.0(6)	

Table S5. Selected structural parameters for 1Au at different temperatures in the cooling mode.

Fe-N-C ^f	172.1(5)	Fe1-N-C 171.3(13)	Fe1-N-C 172.0(13)	Fe1-N-C 171.0(2)	Fe1-N-C 169.7(9)	Fe1-N-C 169.5(17)	Fe1-N-C 168.0(6)
		Fe2-N-C 171.7(13)	Fe2-N-C 172.2(13)	Fe2-N-C 169.5(2)	Fe2-N-C 169.7(9)	Fe2-N-C 168.4(19)	Fe2-N-C 167.8(6)
			Fe3-N-C 171.6(13)			Fe3-N-C 168.7(17)	
			Fe4-N-C 169.8 (14)			Fe4-N-C 169.3(14)	
θ^g	78.232(8)	78.025(5)	78.404(22)	77.160(4)	76.791(1)	76.789(6)	75.945(1)
		77.979(5)	78.375(22)	77.280(4)	76.788(5)	76.945(6)	75.927(1)
			77.201(23)			76.168(6)	
			77.102(1)			76.025(6)	
dihedral	1.693/21.962; 20.296	1.101/22.338;	1.237/22.617; 21.446	0.798/23.037;	0.635/26.332;	1.2224/26.209; 27.337	1.437/27.812;
angle ^h		21.248	1.641/22.383; 20.737	23.778	26.276	0.628/26.027; 25.693	28.890
		2.684/24.542;	2.461/27.750; 25.375	3.015/28.784;	0.595/25.218;	1.277/28.512; 27.465	1.547/27.813;28.9
		21.963	0.634/22.938; 23.293	25.858	25.295	1.573/26.431; 27.581	42
dihedral	5.744	6.312	7.282	7.788	7.694	8.919	9.875
angle ⁱ		7.502	6.067	9.690	8.461	9.568	9.804
			4.825			8.865	
			8.443			9.666	

^aThe average Fe–N bond lengths (Å); ^bThe argentophilic interactions (Å); ^cThe Fe…Fe distance (Å) linked by 4-abpt; ^dThe Fe…Fe distance (Å) linked by [Ag(CN)₂]⁻; ^cOctahedral distortion parameters (°); ^fAverage Fe–N–C angles within Hofmann layer; ^gThe acute angle between neighboring Fe(II) sites within the Hofmann layer; ^hIn the ligand 4-abpt, the dihedral angles between the triazole and each pyridine ring as well as the dihedral angle between the pyridine rings; ⁱThe dihedral angle between the up and down pyridine rings coordinated to Fe(II) site.

Parameter	105 K	134 K	158 K	170 K	174 K	180 K	240 K
<fe–n>^a</fe–n>	<fe1-n>1.997(9)</fe1-n>	<fe1–n> 2.000(16)</fe1–n>	<fe1-n> 1.992(14)</fe1-n>	<fe1-n> 2.112(14)</fe1-n>	<fe1-n> 2.125(15)</fe1-n>	<fe1-n> 2.158(13)</fe1-n>	2.173(5)
	<fe2–n> 2.015(9)</fe2–n>	<fe2–n> 1.962(14)</fe2–n>	<fe2-n> 2.141(14)</fe2-n>	<fe2-n> 2.030(14)</fe2-n>	<fe2-n> 2.053(17)</fe2-n>	<fe2-n> 2.158(14)</fe2-n>	
		<fe3–n> 2.001(16)</fe3–n>		<fe3-n> 2.117(14)</fe3-n>	<fe3–n> 2.109(16)</fe3–n>		
		<fe4–n> 2.114(17)</fe4–n>		<fe4-n> 2.168(13)</fe4-n>	<fe4-n> 2.180(14)</fe4-n>		
$Au{\cdots}Au^{b}$	3.2004(6)	3.2100(12)	3.2222(10)	3.2357(11)	3.2435(11)	3.2428(9)	3.2548(5)
	3.0219(5)	3.2177(11)	3.0392(9)	3.0403(10)	3.2297(12)	3.0622(8)	3.0638(4)
		3.0244(10)		3.2339(10)	3.0456(11)		
		3.0319(12)		3.0549(9)	3.0564(9)		
Fe…Fe ^c	14.6436(8)	14.6296(7)	14.7381(9)	14.7742(9)	14.7868(8)	14.8864(27)	14.9245(10)
	14.6407(8)	14.7290(7)	14.7354(9)	14.7831(9)	14.7964(8)	14.8870(27)	
		14.6408(7)		14.8717(9)	14.8966(8)		
		14.7220(7)		14.8646(9)	14.8845(8)		
Fe…Fe ^d	10.1872(3)	10.1595(5)	10.1656(4)	10.2995(5)	10.4430(6)	10.4112(5)	10.4569(5)
	10.1923(3)	10.1590(5)	10.1576(4)	10.3026(5)	10.4256(6)	10.4021(5)	10.4636(5)
	10.1909(3)	10.2604(5)	10.2927(5)	10.4256(5)	10.2995(6)	10.3214(5)	
	10.1895(3)	10.2723(5)	10.2955(5)	10.4430(5)	10.3026(6)	10.3099(5)	
∑Fe ^e	ΣFe1 21.0(4)	ΣFe1 16.3(6)	ΣFe1 17.1(6)	ΣFe1 22.0(5)	∑Fe1 22.6(6)	ΣFe1 19.0(5)	ΣFe1 19.6(19)
	ΣFe2 23.2(3)	ΣFe2 16.9(6)	ΣFe2 18.6(6)	ΣFe2 20.3(5)	ΣFe2 19.9(6)	ΣFe2 21.6(5)	
		ΣFe3 16.5(7)		ΣFe3 21.3(5)	ΣFe3 23.6(6)		
		ΣFe4 21.7(6)		ΣFe4 23.0(5)	ΣFe4 18.6(5)		

Table S6. Selected structural parameters for 1Au at different temperatures in the warming mode.

Fe-N-C ^f	Fe1-N-C 171.7(9)	Fe1-N-C 171.6(15)	Fe1-N-C 170.3(14)	Fe1-N-C 170.0(14)	Fe1-N-C 169.8(14)	Fe1-N-C 167.6(15)	168.0(5)
	Fe2-N-C 172.6(10)	Fe2-N-C 171.7(13)	Fe2-N-C 169.4(15)	Fe2-N-C 169.9(14)	Fe2-N-C 169.7(16)	Fe2-N-C 168.8(14)	
		Fe3-N-C 170.4(15)		Fe3-N-C 168.6(13)	Fe3-N-C 169.1(15)		
		Fe4-N-C 169.4(16)		Fe4-N-C 168.6(14)	Fe4-N-C 168.7(15)		
θ^{g}	77.729(6)	77.214(6)	77.210(6)	77.119(24)	77.030(23)	75.951(22)	76.105(7)
	77.712(6)	78.311(6)	77.306(6)	76.139(22)	77.100(22)	75.949(22)	
		78.350(6)		77.081(23)	76.012(22)		
		77.280(6)		76.103(22)	75.932(23)		
dihedral	0.962/23.023; 22.099	0.715/21.802; 22.319	1.597/21.270; 22.824	0.835/25.041; 25.645	1.126/25.165; 26.208	2.199/28.559; 30.126	1.206/28.063; 28.639
angle ^h	1.945/23.821; 21.954	1.139/22.335; 21.244	2.480/28.377; 26.154	0.522/26.380; 26.513	0.300/26.067; 26.272	2.002/27.775; 29.141	
		2.486/27.115; 24.851		0.683/27.520; 27.607	0.779/28.301; 27.863		
		1.307/23.924; 22.781		0.538/27.085; 26.666	1.279/26.804; 27.373		
dihedral	6.957	7.701	7.394	9.094	9.450	10.153	10.549
angle ⁱ	6.178	6.169	9.845	8.102	8.800	9.407	
		4.858		8.892	8.809		
		0.218		10 108	0.024		

^aThe average Fe–N bond lengths (Å); ^bThe argentophilic interactions (Å); ^cThe Fe…Fe distance (Å) linked by 4-abpt; ^dThe Fe…Fe distance (Å) linked by [Ag(CN)₂]⁻; ^eOctahedral distortion parameters (°); ^fAverage Fe–N–C angles within Hofmann layer; ^gThe acute angle between neighboring Fe(II) sites within the Hofmann layer; ^hIn the ligand 4-abpt, the dihedral angles between the triazole and each pyridine ring as well as the dihedral angle between the pyridine rings; ⁱThe dihedral angle between the up and down pyridine rings coordinated to Fe^{II} site.

T -		I ^[1]]	[I ^[2]			III ^[3]	
<u> </u>	D—H····A	d(D····A)	<(DHA)	D—H····A	d(D···A)	<(DHA)	D—H····A	d(D···A)	<(DHA)
	C8-H8N9	3.145(9)	122.6	N9-H9AO1	2.796(14)	140.8	C20-H20BO3 ^c	2.93(3)	136.6
	C16-H16N9	3.149(8)	116.9	N9-H9BO2	2.921(17)	165.4	C20-H20CO2 ^b	2.61(3)	127.4
85 K				C19-H19N6 ^a	3.055(17)	170.7	C23-H23BO2 ^d	3.29(2)	146.3
65 K				C19-H19N7 ^a	3.525(17)	155.7	O1-H1AO3	3.31(3)	153.9
				C20-H20AN6 ^b	3.53(2)	143.1			
				C23-H23AN9 ^d	3.261(14)	126.9			
	C8-H8N9	3.16(2)	122.8	N9-H9AO1	2.71(3)	136.3	C95-H95AO2 ^a	3.32(6)	126.8
	C16-H16N9	3.12(2)	117	N9-H9BO2	2.94(4)	165.7	C20-H20BO12 ^d	3.32(8)	154.2
	C88-H88N45	3.13(2)	117.4	N45-H45AO10	2.68(3)	142.7	C20-H20CO2 ^c	2.79(8)	119.7
	C80-H80N45	3.14(2)	123.5	N45-H45BO11	2.94(4)	166.5	C92-H92CO11 ^e	2.69(7)	113.9
				C90-H90BN44	3.48(3)	144.5	C92-H92CO3 ^f	3.18(10)	128.3
109 K				C95-H95BN9 ^a	3.30(4)	132.9	C23-H23CO11 ^g	3.33(6)	135.7
				C19-H19N43 ^b	3.54(4)	157.4	O1-H1O3	3.21(6)	157.6
				C19-H19N42 ^b	3.05(4)	171.1	O10-H10O12	3.18(6)	160.3
				C20-H20AN6 ^c	3.40(5)	141.4			
				C92-H92BN44 ^e	3.30(7)	134.2			
				C23-H23BN45 ^g	3.31(4)	132.7			

Table S7. Hydrogen–bonding interactions for 1Au at different temperatures in the cooling mode.

C8-H8N9	3.14(2)	123.2	N9-H9AO1	2.79(3)	144	C20-H20BO6	3.01(7)	127.3
C16-H16N9	3.17(2)	116	N9-H9BO2	2.96(3)	163.1	C20-H20CO2 ^c	2.56(6)	108.7
C32-H32N21	3.16(2)	123.5	N21-H21AO4	2.71(3)	142	C23-H23CO11 ^d	3.29(6)	121.8
C40-H40N21	3.13(2)	117.4	N21-H21BO5	2.91(4)	163.7	C44-H44AO9 ^e	2.89(5)	131.7
C56-H56N33	3.17(2)	123.5	N33-H33A07	2.69(3)	137	C44-H44BO7 ^e	3.17(7)	119.9
C62-H62N38 ^a	3.11(2)	114.2	N33-H33BO8	2.91(4)	164.3	C44-H44CO11 ^f	2.56(6)	122.4
C64-H64N33	3.13(3)	112.9	N45-H45AO10	2.80(3)	148.4	C47-H47BO2	3.29(5)	156.1
C80-H80N45	3.11(2)	123.2	N45-H45BO11	2.98(4)	163.9	C68-H68BO12 ^h	2.91(8)	146.7
C88-H88N45	3.16(2)	116.9	C19-H19N18 ^b	3.08(3)	165.6	C68-H68CO8 ⁱ	2.69(6)	126.3
			C19-H19N19 ^b	3.54(3)	162.6	C68-H68AO10 ^h	3.04(6)	104.9
			C20-H20AN6 ^c	3.47(4)	129.3	C71-H71CO5 ^j	3.29(5)	132.2
			C23-H23CN45 ^d	3.21(4)	147.2	C92-H92BO1 ^k	3.14(7)	106
			C42-H42CN20	3.52(3)	150.8	C92-H92CO5 ^f	2.68(6)	125
			C43-H43N6 ^c	3.09(3)	154.6	O4-H4O6	3.06(5)	160.9
			C43-H43N7°	3.55(3)	172.1	O7-H7O9	3.09(4)	161
			C44-H44BN42 ^f	3.49(4)	133.7	O10-H10O12	3.23(7)	147.8
			C67-H67N42 ^g	3.14(3)	164.1			
			C67-H67N43 ^g	3.59(3)	165.4			
			C71-H71BN21 ^j	3.36(3)	132			
			C91-H91N30 ^f	3.10(4)	143.1			

121 K

				C91-H91N31 ^f	3.53(3)	165			
				C95-H95BN33 ¹	3.37(4)	120.1			
	C8-H8N9	3.15(4)	123.3	N9-H9AO1	2.66(6)	145.4	C20-H20AO10 ^e	3.08(11)	118.8
	C14-H14N38 ^b	3.10(3)	114.8	N9-H9BO2	3.01(8)	166.7	C20-H20BO12e	3.17(11)	136.5
	C15-H15N16 ^c	3.15(4)	110.7	N45-H45AO10	2.69(5)	147.9	C20-H20CO2 ^f	2.78(10)	119.2
	C16-H16N9	3.14(4)	112.6	N45-H45BO11 ^a	3.02(8)	164.7	C92-H92AO1 ^d	3.04(11)	112
143 K	C86-H86N2	3.05(4)	110.6	C19-H19N42 ^d	3.20(11)	166.6	C92-H92BO11 ^a	2.71(10)	116.5
	C88-H88N45	3.13(4)	116.3	C90-H90AN44	3.44(8)	135.8	C92-H92CO3 ^d	3.09(9)	150.4
	C80-H80N45	3.11(4)	124.3	C91-H91N6 ^g	3.04(11)	163.8	C23-H23CO11 ^d	3.35(10)	175.8
				C91-H91N7 ^g	3.54(10)	163.5	O1-H1O3	3.26(8)	143.8
				C92-H92AN42	3.46(8)	138.4	O10-H10O12	3.07(9)	153.5
	C8-H8N9	3.142(14)	123.8	N9-H9AO1	2.70 (3)	145	C20-H20BO2 ^d	2.64(3)	118.2
	C14-H14N38 ^a	3.100(14)	113	N9-H9BO2	3.03(2)	165.4	C20-H20CO12 ^e	3.09(4)	147.1
	C15-H15N16 ^b	3.137(15)	111	N45-H45AO10	2.80(2)	152.2	C23-H23CO11 ^b	3.37(4)	137.4
	C16-H16N9	3.135(15)	115.6	N45-H45BO11	3.09(2)	168.4	C93-H93AO11 ^h	2.76(4)	133.8
161 K	C80-H80N45	3.143(15)	123.9	C19-H19N42 ^c	3.19(2)	154.8	C93-H93BO1 ⁱ	3.02(4)	114.2
	C86-H86N2	3.072(14)	112.9	C20-H20AN6 ^d	3.49(2)	142.5	C95-H95CO3 ⁱ	2.91(4)	134.7
	C88-H88N45	3.128(16)	116.3	C23-H23BN45 ^b	3.36(2)	131.6	O1-H1O3	3.13(4)	155.8
				C92-H92BN44	3.53(2)	144.2	O10-H10O12	3.25(5)	147.1
				C95-H95BN9 ^f	3.38(5)	142			

				C91-H91N6g	3.18(7)	122.6			
				C91-H91N7 ^g	3.54(4)	149.7			
	C8-H8N9	3.07(3)	123.2	N9-H9AO1	2.74(4)	148.8	C20-H20AO6	3.01(9)	140.6
	C14-H14N14 ^a	3.02(3)	114.3	N9-H9BO2	3.03(4)	165	C20-H20BO2 ^d	2.64(6)	127.5
	C16-H16N9	3.15(3)	116	N21-H21AO4	2.85(4)	144.9	C44-H44AO9e	2.90(8)	129.8
	C32-H32N21	3.17(3)	122	N21-H21BO5	3.03(5)	164.9	C44-H44CO11 ^f	2.60(7)	115.8
	C38-H38N26 ^a	3.10(3)	113.3	N33-H33A07	2.79(3)	131.9	C68-H68AO8 ^h	2.70(6)	114.5
	C40-H40N21	3.09(4)	116.6	N33-H33BO8	3.07(4)	165.6	C68-H68CO12 ⁱ	3.09(7)	150.8
	C56-H56N33	3.15(3)	124.4	N45-H45AO10	2.77(5)	154.1	C92-H92AO5 ^f	2.68(6)	124.7
168 K	C62-H62N38 ^b	3.18(2)	115.3	N45-H45BO11	3.06(5)	165.9	C92-H92BO3 ^j	3.06(7)	143
	C64-H64N33	3.13(3)	113.3	C19-H19N18 ^c	3.20(4)	162.8	C92-H92CO1 ^j	3.01(7)	110.8
	C80-H80N45	3.09(2)	125.5	C20-H20CN6 ^d	3.50(4)	139.9	C95-H95BO8 ^k	3.56(8)	141.2
	C86-H86N2	3.07(2)	115.6	C43-H43N6 ^d	3.22(5)	145.6	O1-H1O3	3.01(6)	154.3
	C88-H88N45	3.14(3)	114.1	C67-H67N42 ^g	3.24(5)	141.4	O4-H4O6	3.06(7)	151.9
				C68-H68BN30 ^h	3.48(4)	146.7	O7-H7O9	3.07(7)	172.4
				C91-H91N30 ^f	3.23(4)	150.2			
				C92-H92CN18 ^f	3.49(4)	143.9			
	C8-H8N9	3.116(9)	124.4	N9-H9AO1	2.786(16)	147.8	C20-H20AO12 ^c	2.98(3)	142
178 K	C14-H14N38 ^a	3.144(9)	116.4	N9-H9BO2	3.057(17)	166.4	C20-H20BO2 ^d	2.70(2)	126.9
	C16-H16N9	3.127(10)	113.9	N45-H45AO10	2.780(15)	151.3	C20-H20CO10 ^c	3.02(2)	114.2

C86-H86N2	3.146(9)	117.1	N45-H45BO11	3.060(18)	165.8	C92-H92AO1 ^f	3.01(2)	109.8
C88-H88N45	3.126(10)	114.5	C19-H19N42 ^b	3.211(18)	157.7	C92-H92BO11 ^g	2.68(2)	134.3
C80-H80N45	3.131(9)	123.8	C91-H91N6 ^e	3.196(19)	159.6	C92-H92CO3 ^f	2.95(4)	142.7
						C23-H23CO11 ^h	3.48(3)	163.6
						O1-H1O3	3.10(4)	150.9
						O10-H10O12	3.08(3)	154.3

^[1] Intramolecular hydrogen bonds in the framework; ^[2] Hydrogen – bonding interactions between host and guest; ^[3] Hydrogen – bonding interactions between guests.

Symmetry codes: [1] at 85 K: (a) -x+1/2, y+1/2, -z+3/2; (b) -x+1/2, -y+1/2, -z+2; (c) x, -y+1, z+1/2; (d) x, -y+1, z-1/2; [2] at 109 K: (a) x+1, y-1, z-1; (b) -x+1, -y+1, -z+1; (c) -x, -y+1, -z+2; (d) x-1, y+1, z+1; (e) -x+1, -y, -z; (f) x, y-1, z-1; (g) x, y+1, z+1; [3] at 121 K: (a) x+1, y-1, z; (b) -x+1, -y+1, -z+1; (c) -x+1, -y+2, -z+1; (d) x, y-1, z+1; (e) x, y+1, z; (f) -x+1, -y+2, -z; (g) -x+1, -y+1, -z; (h) x+1, y-2, z; (i) -x+2, -y, -z; (j) x, y-1, z; (k) x, y+1, z-1; (l) x-1, y+2, z; [4] at 143 K: (a) -x+1, -y-2, z; (b) x-1, y,z+1; (c) x,y+1,z+1; (d) -x+1, -y+1, -z+1; (e) x,y+1,z+1; (d) -x+1, -y+1, -z+1; (e) x,y+1,z+1; (f) -x,-y+1, -z+2; (g) x,y,z-1; [5] at 161 K: (a) x+1, y-2, z; (i) x+1, y-1, z-1; (c) -x+1, -y-1, -z-1; (d) -x+2, -y-1, -z-2; (e) x+1, y-1, z-1; (f) x-1, y+1, z+1; (g) -x+1, -y+1, -z+1; (h) -x+1, -y, -z; (i) x,y+1, z+1; (b) x,y+1, z+1; (c) x,y+1, z+1; (c) x,y+1, z; (f) -x+1, -y+2, -z; (g) -x+1, -y+1, -z; (h) -x+2, -y, -z; (i) x+1, y-2, z; (j) x, y+1, z-1; (k) x-1, y+2, z; [7] at 178 K: (a) x-1, y,z+1; (b) -x+1, -y+1, -z+1; (c) x-1, y+1, z+1; (d) -x, -y+1, -z+2; (e) -x+1, -y+1, -z+1; (f) x,y-1, z-1; (h) x,y+1, z+1; (c) x-1, y+1, z+1; (d) -x, -y+1, -z+2; (e) -x+1, -y+1, -z+1; (f) x,y-1, z-1; (h) x,y+1, z-1; (h) x,y+1, z-1; (h) x-1, y+2, z; [7] at 178 K: (a) x-1, y,z+1; (b) -x+1, -y+1, -z+1; (c) x-1, y+1, z+1; (d) -x, -y+1, -z+2; (e) -x+1, -y+2, -z; (h) x,y+1, z+1;

Т	$I^{[1]}$		Ι	$\mathbf{II}^{[2]}$			III ^[3]			
1	D—H…A	d(D···A)	<(DHA)	D—H····A	d(D···A)	<(DHA)	D—H····A	d(D···A)	<(DHA)	
	C8-H8N9	3.178(14)	122	N9-H9AO1	2.671(19)	139	C95-H95AO2 ^b	3.31(3)	126.9	
	C14-H14N38 ^a	3.005(14)	110.6	N9-H9BO2	2.96(3)	164.6	C20-H20AO2 ^d	2.55(4)	128.9	
	C16-H16N9	3.141(14)	117.3	N45-H45AO10	2.79(2)	147.4	C20-H20CO12 ^e	2.94(4)	138.6	
	C88-H88N45	3.144(14)	115.3	N45-H45BO11	2.95(2)	165.3	C92-H92BO11 ^g	2.68(4)	141.6	
	C80-H80N45	3.146(14)	123.4	C95-H95BN9 ^b	3.28(2)	132.2	C92-H92CO3 ^h	2.91(4)	143.4	
				C19-H19N43 ^c	3.60(2)	172.7	C23-H23CO11 ⁱ	3.16(3)	129.3	
105 K				C19-H19N42 ^c	3.15(2)	155.2	O1-H1O3	3.17(4)	156.1	
				C20-H20BN6 ^d	3.47(3)	147	O10-H10O12	3.37(4)	151.8	
				C91-H91N6 ^f	3.12(3)	147.2				
				C91-H91N7 ^f	3.55(2)	167.4				
				C92-H92AN42 ^g	3.49(3)	147				
				C23-H23CN45 ⁱ	3.28(2)	134.2				
				C18-H18BN8	3.555(18)	149.9				
	C8-H8N9	3.11(2)	123	N9-H9AO1	2.77(3)	143.7	C20-H20AO6	2.97(7)	132.5	
	C16-H16N9	3.14(3)	118.1	N9-H9BO2	2.92(4)	163.6	C20-H20BO2 ^c	2.69(6)	110.4	
134 K	C32-H32N21	3.16(3)	123.5	N21-H21AO4	2.88(4)	139.4	C20-H20CO4	3.23(8)	118.6	
	C40-H40N21	3.13(3)	118.3	N21-H21BO5	2.93(5)	167.2	C44-H44AO9e	3.05(6)	131.2	
	C56-H56N33	3.20(3)	123.1	N33-H33AO7	2.67(3)	134.7	C44-H44BO7 ^e	3.24(7)	120.3	

 Table S8. Hydrogen-bonding interactions for 1Au at different temperatures in the warming mode.

	C62_H62_N38a	3 13(3)	113.8	N33-H33B 08	3.01(5)	165.6	$C44 - H44C = O11^{f}$	2.64(6)	124.9
	C02-11021 1 38	5.15(5)	115.0	N55-1155D06	5.01(5)	105.0	C44=I144C011	2.04(0)	124.7
	C64-H64N33	3.15(3)	113.9	N45-H45AO10	2.80(4)	145.1	C47-H47BO2	3.22(6)	154.1
	C80-H80N45	3.10(3)	123.1	N45-H45BO11	2.96(4)	164.9	C68-H68AO12 ^h	3.05(8)	144.2
	C86-H86N2	3.01(2)	113.5	C19-H19N18 ^b	3.07(4)	139.4	C68-H68BO8 ⁱ	2.74(6)	127.9
	C88-H88N45	3.17(3)	115.6	C19-H19N19 ^b	3.48(4)	164.6	C71-H71AO5 ^j	3.28(8)	123.5
				C23-H23CN45 ^d	3.13(4)	119.9	C92-H92AO3 ^k	2.97(7)	143.7
				C43-H43N6 ^c	3.11(8)	135.9	C92-H92CO5 ^f	2.81(9)	117.3
				C43-H43N7 ^c	3.49(5)	163.6	O1-H1O3	3.36(6)	164.8
				C47-H47BN9	3.26(3)	117	O4-H4O6	3.26(6)	170.1
				C66-H66CN32	3.56(3)	150.3	O7-H7O9	3.09(6)	160.9
				C67-H67N42 ^g	3.13(4)	166.6	O10-H10O12	3.35(7)	151.4
				C68-H68CN30 ⁱ	3.44(5)	148.9			
				C71-H71CN21 ^j	3.36(3)	142.5			
				C91-H91N30 ^f	3.12(4)	175.6			
				C92-H92BN18 ^f	3.39(4)	135.1			
				C95-H95AN33 ¹	3.38(4)	131.6			
	C8-H8N9	3.15(3)	121.6	N9-H9AO1	2.84(6)	151.8	C20-H20AO12 ^d	2.95(8)	135.6
	C14-H14N15	3.06(2)	111.2	N9-H9BO2	3.05(4)	168.3	C20-H20BO2 ^e	2.69(6)	129.1
158 K	C16-H16N9	3.15(3)	114.3	N45-H45AO10	2.82(3)	151.4	C20-H20CO10 ^d	3.09(7)	117.1
	C86-H86N2	3.01(2)	110.7	N45-H45BO11	3.03(4)	166.2	C92-H92AO1 ^g	3.14(7)	122.5
	C88-H88N45	3.13(2)	117	C95-H95AN9 ^b	3.41(4)	138.1	C92-H92BO11 ^h	2.69(7)	124.5

	C80-H80N45	3.13(3)	124.7	C19-H19N42 ^c	3.20(5)	169.9	C92-H92CO3 ^g	2.97(7)	130.2
				C91-H91N6 ^f	3.14(4)	168.9	C23-H23CO11 ⁱ	3.33(6)	141
				C91-H91N7 ^f	3.61(4)	160.2	O1-H1O3	3.14(5)	157.7
				C23-H23CN45 ⁱ	3.38(3)	127	O10-H10O12	2.98(7)	157.8
	C8-H8N9	3.11(3)	124.1	N9-H9AO2	2.97(3)	162.6	C20-H20AO8ª	2.72(6)	127.1
	C14-H14N14 ^a	3.10(2)	113.2	N9-H9BO1	2.70(3)	142.7	C20-H20CO6 ^c	2.90(7)	147.4
	C15-H15N16	3.15(2)	112.6	N21-H21AO5	3.01(3)	165.4	C44-H44BO5 ^f	2.70(5)	137.8
	C16-H16N9	3.12(3)	115.7	N21-H21BO4	2.82(3)	151.4	C44-H44CO9 ^f	2.98(6)	142.9
	C32-H32N21	3.16(2)	123	N33-H33A08	3.03(4)	166.2	C68-H68AO2 ^g	2.73(5)	135.7
	C38-H38N26	3.13(2)	117	N33-H33BO7	2.82(3)	151.4	C68-H68BO12 ^h	3.16(6)	144.6
	C40-H40N21	3.10(2)	116.8	N45-H45AO11	3.05(4)	168.3	C92-H92AO3 ^e	2.96(6)	130.3
	C56-H56N33	3.11(2)	122.8	N45-H45BO10	2.84(6)	151.8	C92-H92CO11 ⁱ	2.71(5)	112.8
170 K	C62-H62N38	3.12(2)	115.1	C19-H19N42 ^b	3.20(3)	146.8	O1-H1O3	2.94(5)	145.9
	C64-H64N33	3.14(2)	114.8	C20-H20BN30 ^a	3.52(3)	145.6	O4-H4O6	3.16(5)	146.7
	C80-H80N45	3.11(3)	124.1	C23-H23AN45 ^d	3.39(3)	136.1	O7-H7O9	3.13(5)	151.2
	C86-H86N2	3.06(2)	111.2	C42-H42CN20	2.51(3)	145.3	O10-H10O12	3.26(7)	145.6
	C88-H88N45	3.16(2)	115.8	C43-H43N30 ^e	3.10(4)	162.3			
				C43-H43N31 ^e	3.57(4)	166.4			
				C44-H44AN18 ^f	3.52(4)	146.4			
				C67-H67N18	3.16(3)	169.6			
				C68-H68CN6 ^g	3.46(4)	142.6			

				C91-H91N6 ⁱ	3.16(4)	154.1			
				C91-H91N7 ⁱ	3.58(3)	174.3			
				C92-H92CN44 ⁱ	3.45(4)	133.8			
				C95-H95AN33 ^h	3.44(3)	149.9			
	C8-H8N9	3.11(3)	123.2	N9-H9AO1	2.77(6)	151.9	C20-H20BO2 ^d	2.69(5)	154.5
	C14-H14N14 ^a	3.08(3)	111.5	N9-H9BO2	2.99(4)	165.1	C20-H20AO4	3.04(5)	134.9
	C16-H16N9	3.14(3)	117.1	N21-H21AO4	2.78(4)	148.1	C20-H20CO6	2.92(7)	124.7
	C32-H32N21	3.16(2)	123.7	N21-H21BO5	2.97(4)	163.7	C44-H44AO9 ^f	2.97(6)	146.7
	C38-H38N26 ^a	3.11(3)	112.4	N33-H33A07	2.86(3)	147.2	C44-H44BO7 ^f	3.00(5)	112.6
	C39-H39N28 ^a	3.14(2)	112.7	N33-H33BO8	3.05(4)	164.7	C44-H44CO11 ^g	2.78(7)	125.2
	C40-H40N21	3.11(3)	114.8	N45-H45AO10	2.72(3)	142.7	C47-H47CO2	3.35(6)	132.7
	C56-H56N33	3.16(2)	124.1	N45-H45BO11	3.07(4)	169.2	C68-H68AO8 ⁱ	2.69(5)	107.6
174 K	C62-H62N38 ^b	3.14(2)	117.5	C19-H19N18 ^c	3.17(4)	169.7	C68-H68BO10 ^j	3.14(5)	131.7
	C64-H64N33	3.13(3)	113.4	C20-H20AN6 ^d	3.60(5)	160.6	C68-H68CO12 ^j	3.10(7)	128.3
	C80-H80N45	3.14(3)	123.7	C23-H23BN45 ^e	3.45(4)	135.4	C92-H92BO5 ^g	2.68(5)	134.3
	C86-H86N2	3.12(2)	116.7	C43-H43N6 ^d	3.16(4)	155.8	C92-H92CO31	3.01(7)	145.2
	C88-H88N45	3.13(2)	115.6	C43-H43N7 ^d	3.63(4)	172.6	C95-H95AO8 ^m	3.58(6)	123.7
				C44-H44BN42 ^g	3.47(4)	136.8	O1-H1O3	3.16(7)	140.3
				C67-H67N42 ^h	3.22(3)	162.2	O4-H4O6	3.15(5)	149
				C71-H71CN21k	3.40(3)	132.8	O7-H7O9	3.20(5)	150.3
				C91-H91N30g	3.19(4)	155	O10-H10O12	3.04(5)	167.1

				C91-H91N31g	3.64(3)	173.5			
				C92-H92AN18 ^g	3.46(4)	149.4			
	C8-H8N9	3.12(2)	123.6	N9-H9AO1	2.82(4)	151.1	C20-H20AO12 ^c	2.98(6)	142.1
180 K	C14-H14N38 ^a	3.15(2)	116.5	N9-H9BO2	3.04(4)	165.5	C20-H20BO2 ^d	2.67(5)	122.2
	C16-H16N9	3.13(2)	115.4	N45-H45AO10	2.76(3)	145.6	C20-H20CO10 ^c	3.16(6)	114.7
	C86-H86N2	3.15(2)	116.6	N45-H45BO11	3.05(4)	165	C92-H92BO11 ^f	2.67(4)	128.7
	C88-H88N45	3.14(2)	115.4	C19-H19N42 ^b	3.18(3)	161.9	C92-H92CO3 ^g	3.05(6)	145.8
	C87-H87N4	3.19(2)	114.4	C91-H91N6 ^e	3.19(3)	158.9	C23-H23CO11 ^h	3.52(6)	149.4
	C80-H80N45	3.12(2)	124	C92-H92AN42 ^f	3.53(4)	146.5	O1-H1O3	3.17(7)	147.6
							O10-H10O12	2.92(5)	164.9
	C8-H8N9	3.128(8)	124.1	N9-H9AO1	2.760(13)	140.7	C20-H20AO1 ^c	3.21(2)	120.9
240 K	C14-H14N2 ^a	3.175(8)	117.4	N9-H9BO2	3.064(18)	166.2	C20-H20BO3 ^c	3.06(2)	139.7
240 K	C16-H16N9	3.138(8)	114.3	C19-H19N6 ^b	3.28(2)	145.7	C20-H20CO2 ^d	2.71(2)	118.4
				C23-H23AN9e	3.438(14)	133.6	O1-H1AO3	2.96(2)	163.3

^[1] Intramolecular hydrogen bonds in the framework; ^[2] Hydrogen-bonding interactions between host and guest; ^[3] Hydrogen-bonding interactions between guests. Symmetry codes: [1] at 105 K: (a) x-1, y, z+1; (b) x+1, y-1, z-1; (c) -x+1, -y+1, -z+1; (d) -x, -y+1, -z+2; (e) x-1, y+1, z+1; (f) -x+1, -y, -z+1; (g) -x+1, -y, -z; (h) x, y-1, z-1; (i) x, y+1, z+1; [2] at 134 K: (a) x+1, y-1, z; (b) -x+1, -y+1, -z+1; (c) -x+1, -y+2, -z+1; (d) x, y-1, z+1; (e) x, y+1, z; (f) -x+1, -y+2, -z; (g) -x+1, -y+1, -z; (h) x+1, y-2, z; (i) -x+2, -y, -z; (j) x, y-1, z; (k) x, y+1, z-1; (l) x-1, y+2, z; [3] at 158K: (a) x-1, y, z+1; (b) x+1, y-1, z-1; (c) -x+1, -y+1, -z+1; (d) x-1, y+1, z+1; (e) -x, -y+1, -z+2; (f) -x+1, -y, -z+1; (g) x, y-1, z-1; (h) -x+1, -y, -z; (i) x, y+1, z+1; [4] at 170 K: (a) x, y, z-1; (b) -x+1, -y+2, -z; (c) x, y+1, z-1; (d) x, y+1, z; (e) x, y-1, z; (f) -x, -y+2, -z+1; (g) x, y, z+1; (h) -x+1, -y+1, -z+1; (i) -x+1, -y+1, -z; [5] at 174 K: (a) x, y, z+1; (b) x+1, y-1, z; (c) -x+1, -y+1, -z+1; (d) -x+1, -y+2, -z+1; (e) x, y-1, z; (f) -x+1, -y+2, -z; (h) -x+1, -y+1, -z; (i) -x+2, -y, -z; (j) x+1, y-2, z; (k) x, y-1, z; (l) x, y+1, z-1; (m) x-1, y+2, z; [6] at 180 K: (a) x-1, y, z+1; (b) -x+1, -y+1, -z+1; (c) -x+1, -y+1, -z+1; (d) -x, -y+1, -z+2; (e) -x+1, -y+1, -z+1; (c) -x+1, -y+1, -z+2; (e) -x+1, -y, -z; (g) x, y-1, z-1; (h) x, y+1, z+1; [7] at 240 K: (a) x+1/2, -y+1/2, z+1/2; (b) -x+1/2, y+1/2, -z+3/2; (c) x, -y+1, z+1/2; (d) -x+1/2, -y+1/2, -z+2; (e) x, -y+1, z-1/2.

Parameter	1Au(HS)	1Au(LS)	1Ag(HS)	1Ag(LS)
<fe–n>^a</fe–n>	2.173(5)	1.965(5)	2.173(3)	1.964(5)
) () (h	3.0638(4)	3.0160(4)	3.0533(6)	2.9902(9)
1 v1 ···1 v1	3.2548(5)	3.1883(5)	3.2032(7)	3.1246(10)
Fe…Fe ^c	14.9245(10)	14.5766(5)	14.9362(9)	14.5699(11)
E- E-d	10.4569(5)	10.1219(2)	10.5783(6)	10.2399(12)
1.61.6	10.4636(5)	10.1229(2)	10.5691(6)	10.2400(12)
ΣFe ^e	19.62(19)	19.3(2)	15.10(11)	17.08(19)
Fe-N-C ^f	168.0(5)	172.1(5)	168.2(3)	172.8(5)
θ^{g}	76.105(7)	78.232(8)	75.532(4)	77.397(7)
dihedral angle ^h	1.21/28.06; 28.64	1.69/21.96; 20.30	1.31/26.25; 27.17	1.79/20.48; 18.76
dihedral angle ⁱ	10.549	5.744	7.08	4.58

Table S9. Selected structural parameters for 1Au and 1Ag in the HS and LS states.

^aThe average Fe–N bond lengths (Å); ^bThe Au···Au or Ag···Ag distances (Å); ^cThe Fe···Fe distance (Å) linked by 4-abpt; ^dThe Fe···Fe distance (Å) linked by $[Au(CN)_2]^-$ (or $[Ag(CN)_2]^-$); ^eOctahedral distortion parameters (°); ^fAverage Fe–N–C angles within Hofmann layer; ^gThe acute angle between neighboring Fe(II) sites within the Hofmann layer; ^hIn the ligand 4-abpt, the dihedral angles between the triazole and each pyridine ring as well as the dihedral angle between the pyridine rings; ⁱThe dihedral angle between the up and down pyridine rings coordinated to Fe^{II} site.

Compound 1	Au (HS)	Compound 1A	difference	
Fe1-N2	2.154(5)	Fe1–N2	2.154(3)	0(5)
Fe1-N4	2.148(5)	Fe1–N4	2.142(3)	0.006(5)
Fe1-N5	2.202(5)	Fe1–N5	2.209(2)	-0.007(5)
Fe1-N10 ^c	2.221(5)	Fe1-N10 ^c	2.217(2)	0.004(5)
Fe1-N13 ^d	2.157(5)	Fe1–N13 ^a	2.159(3)	-0.002(5)
Fe1-N39 ^e	2.157(4)	Fe1–N39 ^b	2.156(3)	0.001(4)
N2-Fe1-N5	89.65(17)	N2-Fe1-N5	89.94(10)	-0.29(17)
N2-Fe1-N10 ^c	89.60(17)	N2-Fe1-N10 ^c	89.42(10)	0.18(17)
N2-Fe1-N13 ^d	91.88(18)	N2-Fe1-N13 ^a	91.38(11)	0.5(18)
N2-Fe1-N39 ^e	89.74(18)	N2-Fe1-N39 ^b	89.85(11)	-0.11(18)
N4-Fe1-N5	89.89(17)	N4–Fe1–N5	90.59(10)	-0.7(17)
N4-Fe1-N10 ^c	90.86(17)	N4–Fe1–N10 ^c	90.05(10)	0.81(17)
N4-Fe1-N13 ^d	86.88(19)	N4–Fe1–N13 ^a	87.27(11)	-0.39(19)
N4-Fe1-N39 ^e	91.51(19)	N4–Fe1–N39 ^b	91.50(11)	0.01(19)
N13 ^d -Fe1-N5	93.10(18)	N13 ^a -Fe1-N5	92.11(10)	0.99(18)
N13 ^d -Fe1-N10 ^c	86.90(17)	N13 ^a -Fe1-N10 ^c	87.76(10)	-0.86(17)
N39 ^e -Fe1-N5	87.55(17)	N39 ^b –Fe1–N5	88.22(10)	-0.67(17)
N39 ^e -Fe1-N10 ^c	92.48(18)	N39 ^b -Fe1-N10 ^c	91.93(10)	0.55(17)
Fe1-N2-C2	176.7(5)	Fe1–N2–C2	177.1(3)	-0.4(5)
Fe1-N4-C4	171.9(5)	Fe1–N4–C4	171.9(3)	0(5)
Fe1-N13 ^g -C25 ^g	159.9(5)	Fe1–N13 ^a –C25 ^a	159.2(3)	0.7(5)
Fe1-N39 ^h -C75 ^h	163.3(5)	Fe1–N39 ^b –C75 ^b	164.4(3)	-1.1(5)

 Table S10. Selected Fe-N bond lengths [Å], N-Fe-N and Fe-N-C angles [°] for 1Au and 1Ag at 240 K.

Symmetry codes: [1] for **1Au**: c) x-1/2, -y+1/2, z-1/2; d) x, -y+1, z-1/2; e) x, -y, z+1/2; g) x, -y+1, z+1/2; h) x, -y, z-1/2; [2] for **1Ag**: a) x, 1-y, -1/2+z; b) x, -y, 1/2+z; c) -1/2+x, 1/2-y, -1/2+z

Т	I ^[1]			$\mathbf{H}^{[2]}$			$\mathrm{III}^{[3]}$		
	D—H····A	d(D····A)	<(DHA)	D—H····A	d(D····A)	<(DHA)	D—H····A	d(D····A)	<(DHA)
	C8-H8N9	3.128(8)	124.1	N9-H9AO1	2.760(13)	140.7	C20-H20AO1 ^c	3.21(2)	120.9
240 K	C14-H14N2 ^a	3.175(8)	117.4	N9-H9BO2	3.064(18)	166.2	C20-H20BO3 ^c	3.06(2)	139.7
(1Au)	C16-H16N9	3.138(8)	114.3	C19-H19N6 ^b	3.28(2)	145.7	C20-H20CO2 ^d	2.71(2)	118.4
				C23-H23AN9 ^e	3.438(14)	133.6	O1-H1AO3	2.96(2)	163.3
	C16-H16N9	3.123(4)	114.9	N9-H9AO1	2.816(7)	126.4	O1-H1AO3	2.859(13)	173.6
240 K (1Ag)	C14-H14N2 ^a	3.197(4)	115.3	N9-H9BO2	2.870(9)	171.2	C20-H20BO3 ^c	3.231(15)	152.4
				C19-H19N6 ^b	3.269(12)	140.1	C20-H20CO2 ^d	2.92(2)	129.6

Table S11. Selected Hydrogen–bonding interactions for 1Au and 1Ag at 240 K.

^[1] Intramolecular hydrogen bonds in the framework; ^[2] Hydrogen-bonding interactions between host and guest; ^[3] Hydrogen-bonding interactions between guests. Symmetry codes : **1Au:** (a) x+1/2, -y+1/2, z+1/2; (b) -x+1/2, y+1/2, -z+3/2; (c) x, -y+1, z+1/2; (d) -x+1/2, -y+1/2, -z+2; (e) x, -y+1, z-1/2. **1Ag:** a) x+1/2, -y+1/2, z+1/2; b) -x+1/2, y+1/2, -z+3/2; c) x, -y+1, z+1/2; d) -x+1/2, -y+1/2, -z+2; (e) x, -y+1, z-1/2. **1Ag:** a) x+1/2, -y+1/2, z+1/2; b) -x+1/2, y+1/2, -z+3/2; c) x, -y+1, z+1/2; d) -x+1/2, -z+2/2; e) x, -y+1, z-1/2. **1Ag:** a) x+1/2, -y+1/2, -z+2/2; b) -x+1/2, -y+1/2, -z+3/2; c) x, -y+1, z+1/2; d) -x+1/2, -z+2/2; d) -x+1/2, -z+3/2; c) x, -y+1, z+1/2; d) -x+1/2, -z+2/2

Figure S1. Variable-temperature magnetic susceptibility for **1Au** at different scan rates. The magnetic data in the range of 60-115 K is presented in the insert.

Figure S2. Variable-temperature magnetic susceptibility with two consecutive cycles for 1Au at 2 K min⁻¹.

Figure S3. The first derivative curve of the magnetic susceptibility at 2 K min⁻¹ for **1Au** on cooling (blue) and heating (red).

Figure S4. Variable-temperature magnetic susceptibility for 1Au at 2 K \cdot min⁻¹ in different range of temperatures to traverse each intermediate state.

Figure S5. DSC curves with three consecutive cycles for 1Au at 10 K min⁻¹.

Figure S6. DSC curves for 1Au at 2 K·min⁻¹ (red), 4 K min⁻¹ (green), and 10 K min⁻¹ (blue).

Figure S7. DSC curve for 1Au at 2 K min⁻¹.

Figure S8. Thermogravimetric analysis of 1Au.

Figure S9. Powder X-ray diffraction of 1Au.

Figure S10 Asymmetric units of **1Au** at different temperatures. Thermal ellipsoids are drawn at the 30% probability. Hydrogen atoms are omitted for clarity.

Figure S11. (a) Arrangement of two unique Fe(II) sites (Fe1, LS, green and Fe2, HS, red) within one Hofmann layer at 158 K, indicating the ordering of each Fe site along the *b*-axis. (b) View of one set of 3D framework at 158 K, indicating the ordering of each Fe site with their respective coloured blocks along the *bc* plane. (c) View of full two fold-interpenetrated 3D framework at 158 K, indicating the spin-state ordering with wave-like -LS-HS- patterning. Hofmann-type layers from two sets of 3D frameworks are indicated by green and red squares, respectively. The layers with the same colored squares are bridged by the 4-abpt ligands, which are omitted for clarity.

Figure S12. (a) Arrangement of four unique Fe(II) sites (Fe1, green; Fe2, red; Fe3, yellow; and Fe4, blue) within one Hofmann layer at 174 K, indicating the ordering of each Fe site along the *b*-axis. (b) View of one set of 3D framework at 174 K, indicating the ordering of each Fe site with their respective colored blocks along the *bc* plane. (c) View of full twofold-interpenetrated 3D framework at 174 K, indicating the ordering of Fe1 (green blocks) and Fe3 (yellow blocks) sites along the *bc* plane. Hofmann-type layers from two sets of 3D frameworks are indicated by red and blue squares, respectively. The layers with the same colored squares are bridged by the 4-abpt ligands, which are omitted for clarity.

Fe3

Figure S13. Hydrogen-bonding interactions in **1Au** at 158 K, 174K, and 240 K, respectively. The asymmetric unit for each 4-abpt ligand is highlighted while the others are translucent. The conventional and weak hydrogen-bonding interactions are marked by green and cyan dashed lines, respectively. Only part of Hydrogen atoms are shown while the others are omitted for clarity. Color codes: Au, yellow; N, blue; O, red; C, grey; H, white.

Figure S14. SEM (left) and SEM-EDS (right) spectra of $1Ag_{0.26}Au_{1.74}$, ((a) and (b)); $1Ag_{1.38}Au_{0.62}$, ((c) and (d)); $1Ag_{0.82}Au_{1.18}$, ((e) and (f)), in the form of plate crystals, after being deposited onto double-sided tape. The ratio of Ag/Au in the alloy is determined by the signal-area ratio of Ag-L/Au-M from the SEM-EDS spectrum. (g)–(i) show the SEM-EDS elemental mapping of $1Ag_{1.38}Au_{0.62}$ for gold, silver, and iron, respectively.

Figure S15. Thermal dependence of $\chi_M T$ at 0.5 K min⁻¹ for 1Au (orange), 1Ag_{0.26}Au_{1.74} (red), 1Ag_{0.82}Au_{1.18} (green), 1Ag_{1.38}Au_{0.62} (blue) and 1Ag (purple)