Supplementary data

A sponge-like small pore zeolite with great accessibility to the micropores

Kok-Giap Haw,¹ S. Moldovan,² Lingxue Tang,¹ Zhengxing Qin,³ Qianrong Fang,¹ Shilun Qiu,¹ and Valentin Valtchev^{*,1,4}

¹ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China.

² Institut des Sciences Appliquées de Rouen, Rouen University, Groupe de Physique des Matériaux (GPM), 76801 Rouen, France

³ State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China),

266580 Qingdao, China

⁴ Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050 Caen, France.

E-mail: valentin.valtchev@ensicaen.fr

No.	File's contents	Page
1	Fig. S1 SEM micrographs of parent (a) and sponge-like SSZ-13 after	
	15 min (b), 30 min (c), 60 min (d), 90 min (e), 120 min (f) and 180 min	
	(g,h) of NH ₄ F treatments in the presence of hydrogen peroxide.	3
2	Fig. S2 TEM micrographs of parent (A1-3) and sponge-like SSZ-13	
	after 15 min (B1-4), 30 min (C1-3), 60 min (D1-5) and 90 min (E1-4)	
	of NH ₄ F treatments in the presence of hydrogen peroxide.	4
3	Fig. S3 TEM tomography slices of H_2O_2 -NH ₄ F US30 in the xy	
	direction.	5
4	Fig. S4 Nitrogen sorption isotherms of parent and sponge-like SSZ-13	
	samples.	6
5	Fig. S5 XRD patterns of SSZ-13 samples treated in 0.5M NaOH	
	solution (a) and 0.5M HCl solution (b) under US radiation at 20 °C.	7
6	Fig. S6 Nitrogen physisorption isotherms of the SSZ-13 samples treated	
	in 30 wt.% H_2O_2 , 0.5M NaOH and 0.5M HCl under ultrasonication for	
	1 h at 20 °C.	8
7	Fig. S7 SEM micrographs of NaOH US60 (a,b) and HCl US60 (c,d).	9
8	Fig. S8 Breakthrough curves of SSZ-13 (a,b), NH ₄ F US60 (c,d) and	
	$\rm H_2O_2\text{-}NH_4F$ US60 (e,f) using the $\rm N_2/\rm CO_2$ (a,c,e) and $\rm CH_4/\rm CO_2$ (b,d,f)	
	gas mixtures at 25 °C.	10
9	Table S1. Physicochemical properties of the series of SSZ-13 samples.	11
10	Table S2. Physicochemical properties of the SSZ-13 samples treated in	
	30 wt.% H_2O_2 , 0.5M NaOH and 0.5M HCl under ultrasonication for 1	
	h at 20 °C.	12
11	Table S3. Weight loss as a function of the type of etchant and treatment	
	procedure.	13

Fig. S1 SEM micrographs of parent (a) and sponge-like SSZ-13 after 15 min (b), 30 min (c), 60 min (d), 90 min (e), 120 min (f) and 180 min (g,h) of NH_4F treatments in the presence of hydrogen peroxide.

Fig. S2 TEM micrographs of parent (A1-3) and sponge-like SSZ-13 after 15 min (B1-4), 30 min (C1-3), 60 min (D1-5) and 90 min (E1-4) of NH_4F treatments in the presence of hydrogen peroxide.

Fig. S3 TEM tomography slices of H_2O_2 -NH₄F US30 in the *xy* direction.

Fig. S4 Nitrogen sorption isotherms of parent and sponge-like SSZ-13 samples.

Fig. S5 XRD patterns of SSZ-13 samples treated in 0.5M NaOH solution (a) and 0.5M HCl solution (b) under US radiation at 20 °C.

Fig. S6 Nitrogen physisorption isotherms of the SSZ-13 samples treated in 30 wt.% H_2O_2 , 0.5M NaOH and 0.5M HCl under ultrasonication for 1 h at 20 °C.

Fig. S7 SEM micrographs of NaOH US60 (a,b) and HCl US60 (c,d).

Fig. S8 Breakthrough curves of SSZ-13 (a,b), NH_4F US60 (c,d) and H_2O_2 - NH_4F US60 (e,f) using the N_2/CO_2 (a,c,e) and CH_4/CO_2 (b,d,f) gas mixtures at 25 °C.

Sample	$S_{\rm BET}/{ m m}^2~{ m g}^{-1}$	$V_{\rm micro}/{\rm cm}^3~{\rm g}^{-1}$	$V_{\rm T}/{\rm cm^3~g^{-1}}$	Si/Al ^a
SSZ-13	511	0.24	0.25	7.8
H ₂ O ₂ -NH ₄ F US15	544	0.26	0.27	7.9
H ₂ O ₂ -NH ₄ F US30	539	0.26	0.27	7.7
H ₂ O ₂ -NH ₄ F US60	542	0.26	0.27	7.6
H ₂ O ₂ -NH ₄ F US90	543	0.26	0.27	7.8

Table S1. Physicochemical properties of the series of SSZ-13 samples.

^a Determined by EDX analysis

Sample	$S_{\rm BET}/{ m m^2~g^{-1}}$	$V_{\rm micro}/~{ m cm}^3~{ m g}^{-1}$	$V_{\rm T}$ / cm ³ g ⁻¹	Si/Al ^a
SSZ-13	511	0.24	0.25	7.8
H_2O_2 US60	541	0.24	0.27	7.1
NaOH US60	497	0.23	0.25	6.3
HCl US60	437	0.20	0.22	8.9

Table S2. Physicochemical properties of the SSZ-13 samples treated in 30 wt.% H_2O_2 , 0.5M NaOH and 0.5M HCl under ultrasonication for 1 h at 20 °C.

^a Determined by EDX analysis

Samples	Weight _{Initial} , g	Weight _{Treated} , g	^a Weight _{Loss} , %				
H ₂ O ₂ -NH ₄ F US15	0.308	0.218	29.2				
H_2O_2 -N H_4F US30	0.308	0.218	29.2				
H ₂ O ₂ -NH ₄ F US60	0.308	0.204	33.8				
H ₂ O ₂ -NH ₄ F US90	0.304	0.203	33.2				
H_2O_2 US60	0.300	0.276	8.0				
NaOH US30	0.302	0.283	6.3				
NaOH US60	0.302	0.273	9.6				
HCI US30	0.302	0.251	16.9				
HCl US60	0.302	0.224	25.8				
$Weight_{Initial}(g) - Weight_{Treated}(g) $							
^a Weight loss = $Weight_{Initial}(g)$ × 100							

Table S3. Weight loss as a function of the type of etchant and treatment procedure.