Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Synthesis, Structural, and Electronic Properties of Sr1-xCaxPdAs

Benjamin W. Y. Redemann, a Michael R. Scudder, a Daniel Weber, a Yaxian Wang, b Wolfgang Windl, b and Joshua E. Goldberger a*

^aDepartment of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States

b Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States

Empirical Formula	SrPdAs
Fw (g/mol)	268.96
Space group	P63/mmc
a (Å)	4.2419(10)
c (Å)	9.0103(2)
V (Å3)	140.407(8)
Ζ	2
T(K)	295
λ (Å)	1.5406
Pattern range $(2\theta, \circ)$	10-80
Rwp	0.0367
R _p	0.0275
Rexp	0.0238

Table S1. Crystal data and refinement results for SrPdA	Table S1.	Crystal data	and refinement	results for	SrPdAs
--	-----------	--------------	----------------	-------------	--------

Table S2. Fractional atomic	coordinates	and isotropic	displacement	parameters	based	on	the
refined SrPdAs structure.							

Element	Х	У	Z	Occupancy	Beq
Sr	0	0	0	1	0.52(7)
Pd	0.3333	0.6667	0.25	1	2.84(11)
As	0.6667	0.3333	0.25	1	1.96(12)

Figure S2. Powder XRD Rietveld refinement results for CaPdAs using TOPAS 6.

Empirical Formula	CaPdAs
Fw (g/mol)	221.42
Space group	Pnma
a (Å)	7.136(2)
b (Å)	8.640(3)
c (Å)	16.590(5)
$V(\text{\AA}_3)$	1022.8(6)
Ζ	16
T (K)	295
λ (Å)	1.5406
Pattern range $(2\theta, \circ)$	10-80
Rwp	0.0946
R _p	0.0660
Rexp	0.0321

Table S3. Crystal data and refinement results for CaPdAs

Table S4. Fractional atomic coordinates and isotropic displacement parameters based on the refined CaPdAs structure.

Element	Х	у	Z	Occupancy	Beq
Ca (1)	0.771(5)	0.008(5)	0.183(3)	1	0.6(2)
Ca (2)	0.238(4)	0.011(5)	0.068(3)	1	0.6(2)
Pd (1)	0.6059(3)	1⁄4	0.0346(1)	1	0.8(2)
Pd (2)	0.1022(3)	1⁄4	0.1917(1)	1	0.8(2)
Pd (3)	0.5194(2)	1⁄4	0.5676(1)	1	0.8(2)
Pd (4)	0.1057(3)	1⁄4	0.6651(1)	1	0.8(2)
As (1)	0.451(3)	1⁄4	0.1832(2)	1	0.4(3)
As (2)	0.860(3)	1⁄4	0.5650(2)	1	0.4(3)
As (3)	0.925(4)	1⁄4	0.0602(2)	1	0.4(3)
As (4)	0.427(4)	1/4	0.7123(1)	1	0.4(3)

able 55. Crystal data and remnement results for 515/6Ca1/61 dAs					
Empirical Formula	Sr5/6Ca1/6PdAs				
Fw (g/mol)	261.04				
Space group	P63/mmc				
a (Å)	4.2381(2)				
c (Å)	8.9806(5)				
V (Å3)	139.696(18)				
Ζ	2				
T (K)	295				
λ (Å)	1.5406				
Pattern range $(2\theta, \circ)$	10-80				
Rwp	0.0947				
Rp	0.0655				
Rexp	0.0285				

Table S5 Crystal data and refinement results for Sr5/6Ca1/6PdAs

Table S6. Fractional atomic coordinates and isotropic displacement parameters	based	on f	the
refined Sr5/6Ca1/6PdAs structure.			

Element	Х	У	Z	Occupancy	Beq
Sr	0	0	0	0.87	1.04(18)
Ca	0	0	0	0.13	1.04(18)
Pd	0.3333	0.6667	0.25	1	2.98(17)
As	0.6667	0.3333	0.25	1	1.0(2)

able 57. Crystal data and fermement results for 512/5Ca1/51 drss					
Empirical Formula	Sr2/3Ca1/3PdAs				
Fw (g/mol)	253.12				
Space group	P6 ₃ /mmc				
a (Å)	4.2191(4)				
c (Å)	8.9436(8)				
$V(Å_3)$	137.87(3)				
Ζ	2				
T (K)	295				
λ (Å)	1.5406				
Pattern range $(2\theta, \circ)$	10-80				
Rwp	0.0978				
Rp	0.0700				
Rexp	0.0313				

Table S7. Crystal data and refinement results for Sr2/3Ca1/3PdAs

Table S8. Fractional atomic coordinates and isotropic displacement parameters	based	on	the
refined Sr2/3Ca1/3PdAs structure.			

Element	Х	У	Z	Occupancy	Beq
Sr	0	0	0	0.69	0.97(19)
Ca	0	0	0	0.31	0.97(19)
Pd	0.3333	0.6667	0.25	1	3.53(15)
As	0.6667	0.3333	0.25	1	2.02(17)

Figure S5. Powder XRD Rietveld refinement results for Sr1/2Ca1/2PdAs using TOPAS 6.

Empirical Formula	Sr1/2Ca1/2PdAs
Fw (g/mol)	245.19
Space group	Pnma
a (Å)	7.325(2)
b (Å)	8.8231(2)
c (Å)	16.763(4)
$V(Å_3)$	1083.4(5)
Ζ	8
T (K)	295
λ (Å)	1.5406
Pattern range $(2\theta, \circ)$	10-80
Rwp	0.0833
Rp	0.0597
Rexp	0.0299

Table S9. Crystal data and refinement results for Sr1/2Ca1/2PdAs

Table S10. Fractional atomic coordinates and isotropic displacement parameters based on the refined Sr1/2Ca1/2PdAs structure.

Element	Х	у	Z	Occupancy	Beq
Ca (1)	0.7631(3)	-0.007(4)	0.1893(2)	0.5	1.4(3)
Sr (1)	0.7631(3)	-0.007(4)	0.1893(2)	0.5	1.4(3)
Ca (2)	0.2530(2)	-0.006(4)	0.0674(2)	0.5	1.4(3)
Sr (2)	0.2530(2)	-0.006(4)	0.0674(2)	0.5	1.4(3)
Pd (1)	0.6077(2)	1⁄4	0.0439(1)	1	1.75(18)
Pd (2)	0.1003(3)	1⁄4	0.1870(1)	1	1.75(18)
Pd (3)	0.5358(3)	1⁄4	0.5650(1)	1	1.75(18)
Pd (4)	0.0883(2)	1⁄4	0.6716(1)	1	1.75(18)
As (1)	0.431(3)	1⁄4	0.1872(1)	1	0.3(2)
As (2)	0.8693(3)	1⁄4	0.5609(2)	1	0.3(2)
As (3)	0.933(3)	1⁄4	0.0540(1)	1	0.3(2)
As (4)	0.415(4)	1/4	0.6995(1)	1	0.3(2)

Figure S6. Powder XRD Rietveld refinement results for Sr1/3Ca2/3PdAs using TOPAS 6.

Empirical Formula	Sr1/3Ca2/3PdAs
Fw (g/mol)	237.27
Space group	Pnma
a (Å)	7.2337(9)
b (Å)	8.7761(4)
c (Å)	16.648(4)
$V(Å_3)$	1056.8(3)
Ζ	8
T (K)	295
λ (Å)	1.5406
Pattern range $(2\theta, \circ)$	10-80
Rwp	0.0765
Rp	0.0545
Rexp	0.0286

Table S11. Crystal data and refinement results for Sr1/3Ca2/3PdAs

Table S12. Fractional atomic coordinates and isotropic displacement parameters based on the refined Sr1/3Ca2/3PdAs structure.

Element	Х	у	Z	Occupancy	Beq
Ca (1)	0.750(7)	0.002(4)	0.1809(3)	0.65	0.9(5)
Sr (1)	0.750(7)	0.002(4)	0.1809(3)	0.35	0.9(5)
Ca (2)	0.247(4)	0.0106(3)	0.0556(2)	0.65	0.9(5)
Sr (2)	0.247(4)	0.0106(3)	0.0556(2)	0.35	0.9(5)
Pd (1)	0.5997(3)	1⁄4	0.0388(1)	1	2.46(17)
Pd (2)	0.1034(3)	1⁄4	0.1933(1)	1	2.46(17)
Pd (3)	0.5551(2)	1/4	0.5724(1)	1	2.46(17)
Pd (4)	0.117(3)	1⁄4	0.6677(1)	1	2.46(17)
As (1)	0.421(4)	1⁄4	0.1902(1)	1	1.1(2)
As (2)	0.8875(3)	1⁄4	0.5701(2)	1	1.1(2)
As (3)	0.9343(3)	1⁄4	0.0622(1)	1	1.1(2)
As(4)	0.430(4)	1/4	0.7098(1)	1	1.1(2)

Figure S7. Powder XRD Rietveld refinement results for Sr1/6Ca5/6PdAs using TOPAS 6.

Empirical Formula	Sr1/6Ca5/6PdAs	
Fw (g/mol)	229.34	
Space group	Pnma	
a (Å)	7.1565(4)	
b (Å)	8.7162(5)	
c (Å)	16.6324(9)	
$V(Å_3)$	1037.48(1)	
Ζ	8	
T (K)	295	
λ (Å)	1.5406	
Pattern range $(2\theta, \circ)$	10-80	
Rwp	0.0744	
Rp	0.0518	
Rexp	0.0227	

Table S13. Crystal data and refinement results for Sr1/6Ca5/6PdAs

Table S14. Fractional atomic coordinates and isotropic displacement parameters based on the refined Sr1/6Ca5/6PdAs structure.

Element	Х	У	Z	Occupancy	Beq
Ca (1)	0.7739(2)	0.0050(3)	0.1891(1)	0.83	0.7(4)
Sr (1)	0.7739(2)	0.0050(3)	0.1891(1)	0.17	0.7(4)
Ca (2)	0.2580(2)	0.0197(2)	0.0666(1)	0.83	0.7(4)
Sr (2)	0.2580(2)	0.0197(2)	0.0666(1)	0.17	0.7(4)
Pd (1)	0.5969(2)	1⁄4	0.0340(6)	1	1.40(7)
Pd (2)	0.1140(2)	1⁄4	0.1961(9)	1	1.40(7)
Pd (3)	0.5143(2)	1⁄4	0.5667(1)	1	1.40(7)
Pd (4)	0.1121(2)	1⁄4	0.6718(1)	1	1.40(7)
As (1)	0.4571(2)	1⁄4	0.1835(9)	1	0.83(12)
As (2)	0.8750(2)	1⁄4	0.5697(2)	1	0.83(12)
As (3)	0.9326(2)	1⁄4	0.0616(1)	1	0.83(12)
As (4)	0.4300(3)	1/4	0.7149(9)	1	0.83(12)

Figure S8. Density of states of SrPdAs calculated by DFT.

Figure S9. Density of states of CaPdAs calculated by DFT.

Phase Stability Evaluation from the DFT-Calculated Convex Hull

The thermodynamic stability in a chemical system can be assessed by a comparison of the free energies of the different phases present. For a solid system in ambient conditions, the external pressure has a negligible effect on the free energy. Thus, in the low-temperature limit where the entropy terms approach zero, the relevant thermodynamic potential is the total energy of the system as calculated by DFT.

Within the convex-hull approach for a two-component system, one first calculates the energies of all (relevant) phases that the two components can form. For the phase whose stability we examine here, Sr2PdAs₂ we examine the phases formed by the two components A = Pd and B = SrAs, which encompass SrPdAs and Sr2PdAs₂ besides the pure-component phases. For the convex hull, all energies are first normalized per atom, i.e., $\overline{E}(x_A, x_B) = \frac{E(A_n B_m)}{n+m}$ with $x_A = n/(n+m)$ and $x_B = m/(n+m)$. From these, formation energies with respect to the endpoints for all phases are calculated, i.e., $\overline{E}_f(x_A, x_B) = \overline{E}(x_A, x_B) - x_A \overline{E}(x_A = 1, x_B = 0) - x_B \overline{E}(x_A = 0, x_B = 1)$ and plotted versus composition. The line connecting the end points through the lowest-energy points such that no other point is below the line is called the convex hull. Phases above the convex hull are unstable and will transform to the phase on the hull with the same composition in case there is one, or otherwise decompose into the two phases at the end of the tie line under it. Figure S10 shows the convex hull plot of the Pd-SrAs system. The Sr2PdAs₂ phase is 163 meV/atom above the convex hull and thus unstable with respect to decomposition into SrAs and SrPdAs.

Figure S10. DFT results for the convex hull of the SrAs-Pd system.

References

1. G. Hautier, in *Prediction and Calculation of Crystal Structures: Methods and Applications*, eds. S. Atahan-Evrenk and A. Aspuru-Guzik, Springer International Publishing, Cham, 2014, Data Mining Approaches to High-Throughput Crystal Structure and Compound Prediction, pp. 139-179.