Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Low-temperature wet chemistry synthetic approaches towards ferrites

Stefano Diodati,^a Richard I. Walton,^b Simone Mascotto^c and Silvia Gross^a

^aDipartimento di Scienze Chimiche- Università degli Studi di Padova – Via Marzolo 1, 35131 Padova ITALY

^bDepartment of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK

^cInstitut für Anorganische und Angewandte Chemie, University of Hamburg, Martin-Luther-King Platz 6, Raum AC 3, 20146 Hamburg, GERMANY

Table S1: Examples of hydrothermal synthesis of BiFeO₃

Precursors	Mineraliser	Temperature/Time	Crystal Form	Notes	Reference
	and Other Additives	[other conditions]			
Bi(NO ₃) ₃ ·5H ₂ O	10 M KOH	194 °C / 2 hours	agglomerated microcrystals		1
Fe(NO ₃) ₃ ·9H ₂ O		[microwave]			
Bi(NO ₃) ₃ ·5H ₂ O	4 M KOH	200 – 220 °C / 2.5 – 20	submicron	Bi ₂ Fe ₄ O ₉	2
$Fe(NO_3)_3 \cdot 9H_2O$		hours		Bi ₂₅ FeO ₄₀	
				competing at higher pH	
Bi(NO ₃) ₃ ·5H ₂ O	5 M NaOH	200 °C	spindles	Bi ₁₂ Fe _{0.63} O _{18.945}	3
$Fe(NO_3)_3 \cdot 9H_2O$	H ₂ O ₂		500 nm	Bi ₂ Fe ₄ O ₉	
				depending on pH and metal ratio	
Bi(NO ₃) ₃ ·5H ₂ O	~11 M KOH	180 °C/ 30 minutes	nanocubes		4
$Fe(NO_3)_3 \cdot 9H_2O$	1.3 M Na ₂ CO ₃	[microwave]	50–200 nm		
NaBiO ₃ ·nH ₂ O	КОН	180 °C/ 48 hours	$0.1 \times 0.1 \times 0.1 \text{ mm}^3$	Bi _{12.5} Fe _{0.5} O _{19.5}	5
$Fe(NO_3)_3 \cdot 9H_2O$	[K]/[Bi] = 120–240			and Bi ₂ Fe ₄ O ₉	
				competing	
		180 °C/ 7 days	$0.5 \times 0.5 \times 0.5 \text{ mm}^3$	phases	
$Bi(NO_3)_3 \cdot 5H_2O$	4 M KOH	130 °C / 24 hours	spherical ~ 100 nm diameter	triethanolamine lowers reaction	6
$Fe(NO_3)_3 \cdot 9H_2O$	triethanolamine			temperature needed	
Bi(NO ₃) ₃ ·5H ₂ O	8 M KOH	160 °C / 28 hours	'walnut-like' micro-spheres ca 30	Bi ₂₅ FeO ₄₀	7
Fe(NO ₃) ₃ ·9H ₂ O			μm	at longer reactions times	
Bi(NO ₃) ₃ ·5H ₂ O	12 M KOH	200 °C / 24 – 48 hours	'nanoflakes' 100-200 nm diameter		8

Fe(NO ₃) ₃ ·9H ₂ O	KNO ₃				
Bi(NO ₃) ₃ ·5H ₂ O	8 M KOH	200 °C / 3 – 24 hours	Microspheres: agglomerates of	Electronic band gap and magnetism	9
$Fe(NO_3)_3 \cdot 9H_2O$			primary particles	correlated to crystal morphology	
	12 M KOH		microcubes		
	12 M KOH		submicrocubes		
	polyethylene glycol				
Bi(NO ₃) ₃ ·5H ₂ O	8 M KOH	175 - 225 °C / 6 hours	agglomerates of irregular-shaped		10
Fe(NO ₃) ₃ ·9H ₂ O			particles 10 -100 nm		
Bi(NO ₃) ₃ ·5H ₂ O	NaOH	180 °C / 6 hours	agglomerated nanoparticles in 1 µm		11
Fe(NO ₃) ₃ ·9H ₂ O	HNO ₃		diameter microrods		
	polyvinylpyrrolidone/ethanol				
Bi(NO ₃) ₃ ·5H ₂ O	1 – 9 M KOH	200 °C / 12 hours	shape evolution from sphere to		12
$Fe(NO_3)_3 \cdot 9H_2O$			octahedron, truncated octahedron,		
			cubo-octahedron or truncated cube		
Bi(NO ₃) ₃	4 M KOH	180 °C / 1 hour	intergrown submicron crystals		13
$Fe(NO_3)_3 \cdot 9H_2O$		[microwave]			
Bi(NO ₃) ₃ ·5H ₂ O	polyvinylalcohol/HCl	180 °C / 24 hours	150 nm particles	Bi ₂₅ FeO ₄₀ formed at shorter	14
Fe(NO ₃) ₃ ·9H ₂ O	7 M KOH			reaction times or lower	
		140 °C 6 hours		temperatures	
BiCl ₃	1 – 5 M NaOH	140 - 200 °C / 6 hours	agglomerates – irregular cubes	addition of NH ₄ Cl influences purity	15
FeCl ₃ ·6H ₂ O	NH ₄ Cl			and crystallinity	
$Bi(NO_3)_3 \cdot 5H_2O$	4 – 7 M KOH	200 °C / 4 hours	agglomerates – cubes > 10 μ m with		16
FeCl ₃ ·6H ₂ O			increasing KOH concentration		
$Bi(NO_3)_3 \cdot 5H_2O$	2N HNO ₃	200 °C / 6 hours	irregular cubes, linked to give chains	magnetic field influences crystallite	17
$Fe(NO_3)_3 \cdot 9H_2O$	8 M KOH	[4 - 12 T magnetic		morphology	
		field]			
Bi(NO ₃) ₃ ·5H ₂ O	4 – 12 M KOH	160 – 200 °C / 30-60	agglomerates of submicron cuboids	Na ₂ CO ₃ lowered temperature	18
Fe(NO ₃) ₃ ·9H ₂ O	Na ₂ CO ₃	mins		required and adjusted crystal	
		[2.45 GHz		morphology	

		microwave]			
BiCl ₃ FeCl ₃	5.7 - 20 M KOH surfactant (PEG, EDTA, CTAB, PVP)	180 °C /6 hours	irregular micron-sized agglomerates, becoming cuboid at higher pH	effect of surfactant is not significant	19
$\begin{array}{c} Bi(NO_3)_3 \cdot 5H_2O \\ Fe(NO_3)_3 \cdot 9H_2O \end{array}$	6 – 10 M NaOH	180 °C /up to 24 hours	> 10 µm cuboids	Bi ₂ Fe ₄ O ₉ and Bi ₂₅ FeO ₄₀ observed in competition	20
$\begin{array}{c} Bi(NO_3)_3 \cdot 5H_2O \\ Fe(NO_3)_3 \cdot 9H_2O \end{array}$	7 M KOH acetone	130 °C / 12 hours	cubic particles with the size range from 50 to 200 nm	acetone lowers temperature of synthesis and avoids formation of Bi ₁₂ (Bi _{0.5} Fe _{0.5})O _{19.5}	21
$\begin{array}{c} Bi(NO_3)_3 \cdot 5H_2O \\ Fe(NO_3)_3 \cdot 9H_2O \end{array}$	3 M KOH ethylene glycol	120 –140 °C /12 hours	agglomerates to give spherical microstructure with diameter ~ 10 μm		22
$\begin{array}{c} Bi(NO_3)_3 \cdot 5H_2O \\ Fe(NO_3)_3 \cdot 9H_2O \end{array}$	8 M KOH 2-methoxy ethanol	200 °C /10 hours	agglomerated nanorods length between 15 and 20 nm and diameter of $\sim 2-3$ nm.		23
$\begin{array}{c} Bi(NO_3)_3 \cdot 5H_2O \\ FeCl_3 \cdot 6H_2O \end{array}$	$NH_4OH pH = 12-13$ acetone	200 °C /48 hours	nanorods: 100 nm \times 1 μ m length		24
$\begin{array}{c} Bi(NO_3)_3 \cdot 5H_2O \\ Fe(NO_3)_3 \cdot 9H_2O \end{array}$	9 M KOH hexadecyl trimethyl ammoniumbromide	180 °C for 90 min [microwave]	agglomerated facetted crystals in 10 µm microspheres		25

References

- 1. S. Komarneni, V. C. Menon, Q. H. Li, R. Roy and E. Ainger, J. Am. Ceram. Soc., 1996, 79, 1409-1412.
- 2. C. Chen, J. R. Cheng, S. W. Yu, L. J. Che and Z. Y. Meng, J. Cryst. Growth, 2006, 291, 135-139.
- 3. J. T. Han, Y. H. Huang, X. J. Wu, C. L. Wu, W. Wei, B. Peng, W. Huang and J. B. Goodenough, *Adv. Mater.*, 2006, **18**, 2145-+.
- 4. U. A. Joshi, J. S. Jang, P. H. Borse and J. S. Lee, *Appl. Phys. Lett.*, 2008, 92, 3.
- 5. H. Jiang, Y. Morozumi, N. Kumada, Y. Yonesaki, T. Takei and N. Kinomura, J. Ceram. Soc. Jpn., 2008, **116**, 837-839.
- 6. C. M. Cho, J. H. Noh, I. S. Cho, J. S. An, K. S. Hong and J. Y. Kim, *J. Am. Ceram. Soc.*, 2008, **91**, 3753-3755.
- 7. Y. J. Chen, Q. S. Wu and J. Zhao, J. Alloy. Compd., 2009, 487, 599-604.
- 8. Y. G. Wang, G. Xu, L. L. Yang, Z. H. Ren, X. Wei, W. J. Weng, P. Y. Du, G. Shen and G. R. Han, *Ceram. Int.*, 2009, **35**, 1285-1287.
- 9. S. Li, Y. H. Lin, B. P. Zhang, Y. Wang and C. W. Nan, J. Phys. Chem. C, 2010, 114, 2903-2908.
- S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, H. W. Kang, J. S. Kim and C. Il Cheon, *Ceram. Int.*, 2010, 36, 1365-1372.
- 11. L. Zhang, X. F. Cao, Y. L. Ma, X. T. Chen and Z. L. Xue, J. Solid State Chem., 2010, 183, 1761-1766.
- 12. X. Z. Chen, Z. C. Qiu, J. P. Zhou, G. Q. Zhu, X. B. Bian and P. Liu, *Mater. Chem. Phys.*, 2011, **126**, 560-567.
- 13. G. Biasotto, A. Z. Simoes, C. R. Foschini, M. A. Zaghete, J. A. Varela and E. Longo, *Mater. Res. Bull.*, 2011, **46**, 2543-2547.
- 14. D. R. Cai, J. M. Li, T. Tong, D. R. Jin, S. W. Yu and J. R. Cheng, *Mater. Chem. Phys.*, 2012, **134**, 139-144.
- 15. Z. C. Qiu, J. P. Zhou, G. Q. Zhu, X. M. Chen, R. L. Yang, Y. H. Song and P. Liu, *J. Nanosci. Nanotechnol.*, 2012, **12**, 6552-6557.
- 16. J. P. Zhou, R. L. Yang, R. J. Xiao, X. M. Chen and C. Y. Deng, *Mater. Res. Bull.*, 2012, 47, 3630-3636.
- 17. L. Hou, K. H. Zuo, Q. B. Sun, Z. M. Ren, Y. P. Zeng and X. Li, *Appl. Phys. Lett.*, 2013, **102**, 4.
- 18. C. Ponzoni, R. Rosa, M. Cannio, V. Buscaglia, E. Finocchio, P. Nanni and C. Leonelli, J. Alloy. Compd., 2013, 558, 150-159.
- 19. C. Y. Song, J. B. Xu, A. Yimamu and L. Wang, Integr. Ferroelectr., 2014, 153, 33-41.
- 20. D. Z. Yan, C. L. Sun, J. K. Jian, Y. F. Sun, R. Wu and J. Li, *J. Mater. Sci.-Mater. Electron.*, 2014, 25, 928-935.
- 21. Z. W. Chen and W. L. Jin, J. Mater. Sci.-Mater. Electron., 2014, 25, 4039-4045.
- 22. Z. W. Chen, W. L. Jin, Z. Y. Lu and C. C. Hu, J. Mater. Sci.-Mater. Electron., 2015, 26, 1077-1086.
- 23. R. Dhanalakshmi, M. Muneeswaran, P. R. Vanga, M. Ashok and N. V. Giridharan, *Appl. Phys. A-Mater. Sci. Process.*, 2016, **122**, 14.
- 24. C. L. Fu, F. Sun, J. X. Hao, R. L. Gao, W. Cai, G. Chen and X. L. Deng, *J. Mater. Sci.-Mater. Electron.*, 2016, **27**, 8242-8246.
- 25. X. Y. Sun, Z. W. Liu, H. Y. Yu, Z. G. Zheng and D. C. Zeng, *Mater. Lett.*, 2018, 219, 225-228.