Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting information

Porous Quasi-graphitic Carbon Sheets for Unprecedented Sodium Storage

Yian Liu,^{a,b,#} Siyan Liu^{c,#}, Ziyi Liu^a, Haoxiang Tian^a, Zexiao Li^a, Hua Su^d, Yuanxun Li^d, Nasir Mahmood^{e,*}, Xian Jian^{a,b,*}, Huakun Liu^f

^aSchool of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China.

^bNational Engineering Research Center of Electromagnetic Radiation Control Materials, State Key Laboratory of

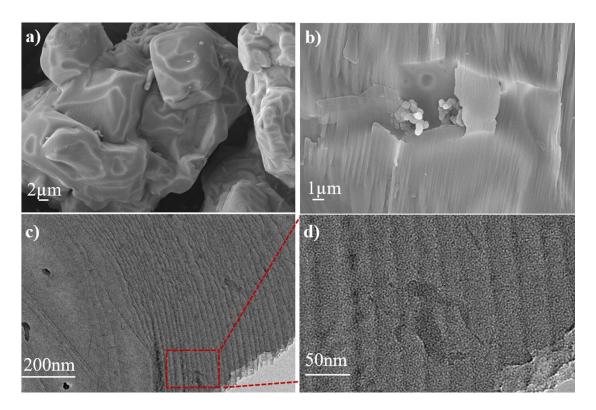
Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu

610054, China.

^cSchool of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai, 200240, China.

^dInstitute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia.

^eSchool of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China


^fSchool of Engineering, RMIT University, 124 La Trobe Street, 3001 Melbourne, Victoria, Australia.

Corresponding Author

*E-mail: jianxian@uestc.edu.cn (Xian Jian);

nasir.mahmood@rmit.edu.au (Nasir Mahmood)

[#]These authors contributed equally to this work.

Figure S1. (a-b) SEM image and (c-d) TEM images of PGCs formed on the surface of KCl prepared at 650 $^{\circ}$ C.

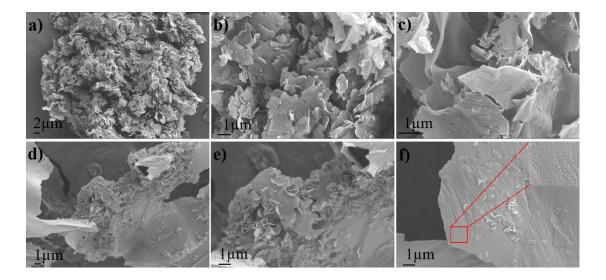


Figure S2. SEM images of PGCs prepared at (a-c) 600 $^{\circ}$ C and (d-f) 650 $^{\circ}$ C (the inside shows the micro and macro pores from the partial enlarged image).

Figure S3. (a)XRD and (b) EDS patterns of PGCs prepared at 650 $^{\circ}$ C, inside shows the masses and atoms

percentage for C, K, and Cl.

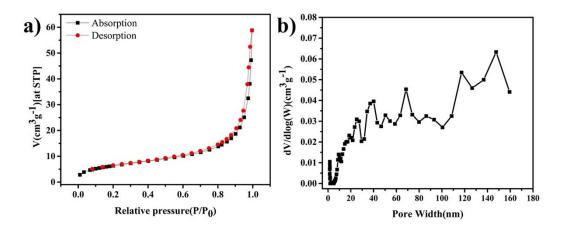


Figure S4. N₂ adsorption-desorption isotherms and pore size distribution of the PGCs.

Table.S1. Comparison of the electrochemical properties of active anode materials fabricated by carbon element with different structures

Anode materials	Current	Special	capacity	Refs.
	density	capacity	retention	
PGCs	0.1A g ⁻¹	237 mAh g ⁻¹	83.5 %	This
	0.5A g ⁻¹	159 mAh g ⁻¹	74.6 %	work
Hard carbon	0.5 A g ⁻¹	135 mAh g ⁻¹		1
Graphene nanosheets	0.1 A g ⁻¹	189 mAh g ⁻¹	80%	2
	0.5 A g ⁻¹	159 mAh g ⁻¹	80%	
Carbon nanotubes -	0.1 A g ⁻¹	68 mAh g ⁻¹	80%	_ 2
	0.5 A g ⁻¹	48 mAh g ⁻¹	80%	-
Carbon Quantum Dot-derived 3D Porous Carbon	0.1 A g ⁻¹	303mAh g ⁻¹	85%	3
Porous carbon aerogels	0.05 A g ⁻¹	287 mAh g ⁻¹	67.4 %	4

	_			
	$0.5 \; A \; g^{-1}$	154 mAh g ⁻¹	73.3 %	
Tire-derived carbon	0.02 A g ⁻¹	203 mAh g ⁻¹	-	5
Pitch-derived amorphous carbon	$0.03~{\rm A~g^{-1}}$	284 mAh g ⁻¹	94%	6
Rice husk-derived hard carbons	0.025 A g ⁻¹	346 mAh g ⁻¹	93%	7
Mesoporous soft carbon	$0.03~{\rm A~g^{-1}}$	331 mAh g ⁻¹	-	- 8
	0.5 A g ⁻¹	103 mAh g ⁻¹	-	
Mesoporous Wood Carbon	$0.15~{\rm A~g^{-1}}$	80 mAh g ⁻¹	95%	9
3D amorphous carbon	$0.03~{\rm A~g^{-1}}$	$280~\mathrm{mAh~g^{-1}}$	-	10
3D hard carbon	$0.5 \; A \; g^{-1}$	90 mAh g ⁻¹	78%	11
Pitch and lignin-drived Amorphous carbon	$0.03~{\rm A~g^{-1}}$	254 mAh g ⁻¹	97%	12
Hollow Carbon Nanowires	0.05 A g ⁻¹	251 mAh g ⁻¹	82.2 %	_ 13
	0.5 A g ⁻¹	149 mAh g ⁻¹	-	

References

- 1. S. Alvin, D. Yoon, C. Chandra, R. F. Susanti, W. Chang, C. Ryu and J. Kim, Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries, *Journal of Power Sources*, 2019, **430**, 157-168.
- 2. X.-F. Luo, C.-H. Yang, Y.-Y. Peng, N.-W. Pu, M.-D. Ger, C.-T. Hsieh and J.-K. Chang, Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries, *Journal of Materials Chemistry A*, 2015, **3**, 10320-10326.
- 3. H. Hou, C. E. Banks, M. Jing, Y. Zhang and X. Ji, Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life, *Advanced materials*, 2015, **27**, 7861-7866.
- 4. Y. Chen, Z. Zhang, Y. Lai, X. Shi, J. Li, X. Chen, K. Zhang and J. Li, Self-assembly of 3D neat porous carbon aerogels with NaCl as template and flux for sodium-ion batteries, *Journal of Power Sources*, 2017, **359**, 529-538.
- 5. Y. Li, M. P. Paranthaman, K. Akato, A. K. Naskar, A. M. Levine, R. J. Lee, S.-O. Kim, J. Zhang, S. Dai and A. Manthiram, Tire-derived carbon composite anodes for sodium-ion batteries, *Journal of Power Sources*, 2016, **316**, 232-238.
- 6. Y. Li, L. Mu, Y.-S. Hu, H. Li, L. Chen and X. Huang, Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries, *Energy Storage Materials*, 2016, **2**, 139-145.
- 7. Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou and J. Bao, Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries, *Carbon*, 2018, **127**, 658-666.
- 8. B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen and H. Song, Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance, *Journal of Materials Chemistry A*, 2016, **4**, 6472-6478.
- 9. F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu, E. Hitz, Y. Tang, Y. Chen, V. L. Sprenkle, X. Li and L. Hu, Low-Tortuosity, and Mesoporous Wood Carbon

- Anode for High-Performance Sodium-Ion Batteries, *Advanced Energy Materials*, 2016, **6**, 1600377.
- 10. P. Lu, Y. Sun, H. Xiang, X. Liang and Y. Yu, 3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries, *Advanced Energy Materials*, 2018, **8**, 1702434.
- 11. Z. Yuan, L. Si and X. Zhu, Three-dimensional hard carbon matrix for sodiumion battery anode with superior-rate performance and ultralong cycle life, *Journal of Materials Chemistry A*, 2015, **3**, 23403-23411.
- 12. Y. Li, Y.-S. Hu, H. Li, L. Chen and X. Huang, A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries, *Journal of Materials Chemistry A*, 2016, **4**, 96-104.
- 13. Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang and J. Liu, Sodium ion insertion in hollow carbon nanowires for battery applications, *Nano letters*, 2012, **12**, 3783-3787.