Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Synthesis of dual emitting iodocuprates: can solvent switch the reaction outcome?

Alexander V. Artem'ev,*^a Alexey S. Berezin,^a Ilya V. Taidakov,^b Irina Yu. Bagryanskaya^c

^a Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave., 3, 630090 Novosibirsk, Russian Federation

^b P.N. Lebedev Physical Institute of Russian Academy of Sciences, Leninskiy Prospekt, 53, 119991 Moscow, Russian Federation

^c N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave., 9, 630090 Novosibirsk, Russian Federation

*E-mail: chemisufarm@yandex.ru (Alexander V. Artem'ev)

Table of Contents

Pages

S2	X-Ray crystallography data
S2	Table S1. Crystal data and structure refinement for 1, LT-1, 2, and LT-2.
S3	Figure S1. Experimental and simulated PXRD patterns of as-made samples of 1 and 2.
S3	Figure S2. ¹ H NMR spectrum of [Me-PySMe]I (CD ₃ CN).
S3	Figure S3. ¹³ C NMR spectrum of [Me-PySMe]I (CD ₃ CN).
S4	Figure S4. FT-IR spectra of 1, 2 and [Me-PySMe]I showed in the fingerprint region.
S4	Figure S5. TGA&DTG curves for 1 and 2.
S4 S5	Figure S5. TGA&DTG curves for 1 and 2. Figure S6. Temperature dependent excitation spectra of 2 recorded for (a) HE emission band (λ_{em} = 600 nm); (b) LE emission band (λ_{em} = 660 nm).
	Figure S6. Temperature dependent excitation spectra of 2 recorded for (a) HE emission
S5	Figure S6. Temperature dependent excitation spectra of 2 recorded for (a) HE emission band ($\lambda_{em} = 600 \text{ nm}$); (b) LE emission band ($\lambda_{em} = 660 \text{ nm}$).
S5 S5	Figure S6. Temperature dependent excitation spectra of 2 recorded for (a) HE emission band ($\lambda_{em} = 600 \text{ nm}$); (b) LE emission band ($\lambda_{em} = 660 \text{ nm}$). Figure S7. Temperature dependence of the LE emission lifetimes of 2 ($\lambda_{ex} = 390 \text{ nm}$).

X-Ray crystallography data

Single crystals of **1** were grown by slow evaporation of an acetonitrile solution at room temperature for overnight. Crystals of **2** were obtained in a similar way using an acetone solution. The data were collected on a Bruker Kappa Apex II CCD diffractometer using ϕ, ω -scans of narrow (0.5°) frames with MoK α radiation ($\lambda = 0.71073$ Å) and a graphite monochromator. Experiments were carried out both at 296 K (structures **1** and **2**) and at a low temperature (structures **LT-1** and **LT-2**). The structures were solved by direct method and refined by a full matrix least-squares anisotropic-isotropic (for H atoms) procedure using *SHELXL-2014/7* program set.^[1] Absorption corrections were applied using the empirical multiscan method with the *SADABS* program.^[2] The positions of the hydrogen atoms were calculated with the riding model. The crystallographic data and details of the structure refinements are summarized in Table S1.

	1	LT-1	2	LT-2
CCDC number	1980260	1980261	1980262	1980263
Chemical formula	$C_7H_{10}Cu_2I_3NS$	$C_7H_{10}Cu_2I_3NS$	$C_7H_{10}Cu_2I_3NS$	$C_7H_{10}Cu_2I_3NS$
M _r	648.00	648.00	552.78	552.78
Crystal system, space group	Triclinic, <i>P</i> [−] 1	Triclinic, <i>P</i> ⁻1	Monoclinic, C2/c	Monoclinic, C2/c
Temperature (K)	296	150	296	173
a, b, c (Å)	8.3955(6), 8.8269(6), 10.2082(7)	8.3509(5), 8.6611(5), 10.1643(6)	17.1423(7), 12.6156(5), 14.4514(9)	17.0938(6), 12.5931(3), 14.2965(5)
α, β, γ (°)	83.171(3), 80.856(3), 78.317(3)	83.349(2), 81.897(2), 78.881(2)	90, 125.098(2), 90	90, 125.166(1), 90
<i>V</i> (Å ³)	728.46(9)	711.18(7)	2557.0(2)	2515.83(14)
Ζ	2	2	8	8
μ (mm ⁻¹)	9.39	9.62	8.68	8.82
Crystal size (mm)	0.50 × 0.30 × 0.10	0.35 × 0.22 × 0.06	0.35 × 0.10 × 0.02	0.15 × 0.15 × 0.10
T _{min} , T _{max}	0.578, 0.862	0.510, 0.928	0.618, 0.928	0.510, 0.928
No. of measured, independent and observed [$l > 2\sigma(l)$] reflections	10792, 3290, 2575	12728, 3745, 3186	29378, 3740, 3223	15875, 4593, 3941
R _{int}	0.022	0.033	0.044	0.049
(sin θ/λ) _{max} (Å ⁻¹)	0.650	0.704	0.705	0.759
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.133, 1.01	0.031, 0.075, 1.03	0.033, 0.083, 1.03	0.030, 0.078, 1.03
No. of reflections	3290	3745	3740	4593
No. of parameters	139	139	121	121
$\Delta angle_{max},\Delta angle_{min}$ (e Å ⁻³)	2.31, -1.63	1.92, –1.53	1.96, –2.14	2.42, -2.93

Table S1. Crystal data and structure refinement for 1, LT-1, 2, and LT-2.

^[1] G. M. Sheldrick, *Acta Crystallogr., Sect. C: Struct. Chem.*, **2015**, *71*, 3–8. ^[2] *SADABS*, v. 2008-1, Bruker AXS, Madison, WI, USA, 2008.

Figure S1. Experimental and simulated PXRD patterns of as-made samples of 1 (*left*) and 2.

Figure S2. ¹H NMR spectrum of [Me-PySMe]I (CD₃CN).

Figure S3. ¹³C NMR spectrum of [Me-PySMe]I (CD₃CN).

Figure S4. FT-IR spectra of 1, 2 and [Me-PySMe]I showed in the fingerprint region.

Figure S5. TGA&DTG curves for 1 and 2.

Figure S6. Temperature dependent excitation spectra of **2** recorded for (a) HE emission band (λ_{em} = 600 nm); (b) LE emission band (λ_{em} = 660 nm).

Figure S7. Temperature dependence of the LE emission lifetimes of 2 (λ_{ex} = 390 nm).

Figure S8. The I_{HE}/I_{LE} integral ratio of **1** as a function of temperature.

Figure S9. The I_{HE}/I_{LE} integral ratio of **2** as a function of temperature.

Under UV-light, ≈80 K

≈300 K

Figure S10. Thermochromic luminescence of 1 (*left*) and 2 (*right*).