## **Electron Supporting Information**

## Ln(II) and Ca(II) NC<sub>sp3</sub>N pincer type diarylmethanido complexes – promising catalysts for C–C and C–E (E = Si, P, N, S) bond formation

Dmitry O. Khristolyubov,<sup>a</sup> Dmitry M. Lyubov,<sup>a</sup> Andrey S. Shavyrin,<sup>a</sup> Anton V. Cherkasov,<sup>a</sup> Georgy K. Fukin,<sup>a</sup> Alexander A. Trifonov <sup>a,b,\*</sup>

<sup>a</sup> Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 603950, Nizhny Novgorod, Russia

<sup>b</sup> Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Street 28, 119334, Moscow, Russia

## Content

| <b>Fable S1.</b> Crystal data and structures refinement details for complexes 2, 3, 4, and 4 <sup>THF</sup> 3                                                                                          |    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| Fig. S1. <sup>1</sup> H NMR spectrum of $[2,2]{-}(4-MeC_6H_3NMe_2)_2CH]_2Yb$ (2).                                                                                                                      |    |  |  |  |
| <b>Fig. S2.</b> <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Yb$ ( <b>2</b> ).                                                                                      |    |  |  |  |
| 4                                                                                                                                                                                                      |    |  |  |  |
| <b>Fig. S3.</b> ${}^{13}\text{C}{}^{-1}\text{H}$ HSQC NMR spectrum of [2,2'-(4-MeC <sub>6</sub> H <sub>3</sub> NMe <sub>2</sub> ) <sub>2</sub> CH] <sub>2</sub> Yb ( <b>2</b> ).                       | 5  |  |  |  |
| <b>Fig. S4.</b> ${}^{171}$ Yb ${}^{-1}$ H HSQC NMR spectrum of [2,2'-(4-MeC <sub>6</sub> H <sub>3</sub> NMe <sub>2</sub> ) <sub>2</sub> CH] <sub>2</sub> Yb ( <b>2</b> ).                              | 5  |  |  |  |
| <b>Fig. S5.</b> <sup>1</sup> H NMR spectrum of $[2,2]$ - $(4-MeC_6H_3NMe_2)_2CH]_2Yb(THF)_n$ (2 <sup>THF</sup> ).                                                                                      | 6  |  |  |  |
| Fig. S6. <sup>13</sup> C{ <sup>1</sup> H} NMR spectrum of $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Yb(THF)_n$ (2 <sup>THF</sup> ).                                                                               | 6  |  |  |  |
| <b>Fig. S7.</b> ${}^{13}\text{C}^{-1}\text{H}$ HSQC NMR spectrum of $[2,2](4-\text{MeC}_6\text{H}_3\text{NMe}_2)_2\text{CH}]_2$ Yb(THF) <sub>2</sub> (2 <sup>THF</sup> ).                              | 7  |  |  |  |
| <b>Fig. S8.</b> $^{171}$ Yb $^{-1}$ H HSQC NMR spectrum of [2,2'-(4-MeC <sub>6</sub> H <sub>3</sub> NMe <sub>2</sub> ) <sub>2</sub> CH] <sub>2</sub> Yb(THF) <sub>n</sub> ( <b>2</b> <sup>THF</sup> ). | 7  |  |  |  |
| <b>Fig. S9.</b> <sup>1</sup> H NMR spectrum of $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Sm$ ( <b>3</b> ).                                                                                                        | 8  |  |  |  |
| <b>Fig. S10.</b> ${}^{13}C{}^{1}H{}$ NMR spectrum of [2,2'-(4-MeC <sub>6</sub> H <sub>3</sub> NMe <sub>2</sub> ) <sub>2</sub> CH] <sub>2</sub> Sm ( <b>3</b> ).                                        | 8  |  |  |  |
| <b>Fig. S11.</b> <sup>1</sup> H NMR spectrum of $[2,2]{-}(4-MeC_6H_3NMe_2)_2CH]_2Ca$ (4).                                                                                                              | 9  |  |  |  |
| <b>Fig. S12.</b> ${}^{13}C{}^{1}H$ NMR spectrum of [2,2'-(4-MeC <sub>6</sub> H <sub>3</sub> NMe <sub>2</sub> ) <sub>2</sub> CH] <sub>2</sub> Ca (4).                                                   | 9  |  |  |  |
| <b>Fig. S13.</b> ${}^{13}C^{-1}H$ HSQC NMR spectrum of $[2,2](4-MeC_6H_3NMe_2)_2CH]_2Ca$ (4).                                                                                                          |    |  |  |  |
| 10                                                                                                                                                                                                     |    |  |  |  |
| Fig. S14. <sup>1</sup> H NMR spectrum of $[2,2]$ - $(4-MeC_6H_3NMe_2)_2CH]_2Ca(THF)_2$ (4 <sup>THF</sup> ).                                                                                            | 10 |  |  |  |
| <b>Fig. S15.</b> ${}^{13}C{}^{1}H$ NMR spectrum of [2,2'-(4-MeC <sub>6</sub> H <sub>3</sub> NMe <sub>2</sub> ) <sub>2</sub> CH] <sub>2</sub> Ca(THF) <sub>2</sub> (4 <sup>THF</sup> ).                 | 11 |  |  |  |
| Fig. S16. ${}^{13}C^{-1}H$ HSQC NMR spectrum of $[2,2](4-MeC_6H_3NMe_2)_2CH]_2Ca(THF)_2$ (4 <sup>THF</sup> ).                                                                                          | 11 |  |  |  |
| Characterization of PhCH <sub>2</sub> CH(Ph)SiH <sub>2</sub> Ph.                                                                                                                                       | 12 |  |  |  |

| Fig. S17. <sup>1</sup> H NMR spectrum of PhCH <sub>2</sub> CHSiH <sub>2</sub> Ph.                                                                 | 12 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Fig. S18.</b> ${}^{13}C{}^{1}H$ NMR spectrum of PhCH <sub>2</sub> CHSiH <sub>2</sub> Ph.                                                       | 13 |
| Fig. S19. <sup>29</sup> Si{ <sup>1</sup> H} NMR spectrum of PhCH <sub>2</sub> CHSiH <sub>2</sub> Ph.                                              | 13 |
| Fig. S20. <sup>1</sup> H NMR spectrum of PhSiH <sub>3</sub> disproportionation reaction catalyzed by $4^{THF}$ .                                  | 14 |
| <b>Fig. S21.</b> <sup>29</sup> Si{ <sup>1</sup> H} NMR spectrum of PhSiH <sub>3</sub> disproportionation reaction catalyzed by $4^{\text{THF}}$ . | 14 |
| <b>Fig. S22.</b> <sup>1</sup> H NMR spectrum of $2,2'-(4-MeC_6H_3NMe_2)_2CHSiH_2Ph$ .                                                             | 15 |
| <b>Fig. S23.</b> ${}^{13}C{}^{1}H$ NMR spectrum of 2,2'-(4-MeC <sub>6</sub> H <sub>3</sub> NMe <sub>2</sub> ) <sub>2</sub> CHSiH <sub>2</sub> Ph. |    |
| 15                                                                                                                                                |    |
| Fig. S24. <sup>1</sup> H NMR spectrum of the reaction mixture of 4 and PhSiH <sub>3</sub> .                                                       | 16 |
| Fig. S25. $^{29}$ Si $^{-1}$ H HSQC NMR spectrum of the reaction mixture of 4 and PhSiH <sub>3</sub> .                                            | 16 |
| <b>Fig. S26.</b> <sup>1</sup> H NMR spectrum of the reaction mixture of $4^{\text{THF}}$ and PhSiH <sub>3</sub> .                                 | 16 |

| Compound                                      | 2                           | 3                           | 4                           | 4 <sup>THF</sup>            |
|-----------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Empirical Formula                             | $C_{38}H_{50}N_4Yb$         | $C_{38}H_{50}N_4Sm$         | $C_{38}H_{50}CaN_4$         | $C_{46}H_{66}CaN_4O_2$      |
| Formula Weight                                | 735.86                      | 713.17                      | 602.90                      | 747.10                      |
| Crystal System                                | Triclinic                   | Monoclinic                  | Triclinic                   | Triclinic                   |
| Space Group                                   | P-1                         | $P2_{1}/c$                  | P-1                         | P-1                         |
| <i>a</i> , Å                                  | 8.9354(4)                   | 12.20130(10)                | 8.9015(3)                   | 12.3169(6)                  |
| b, Å                                          | 10.2031(5)                  | 14.20510(10)                | 10.2113(4)                  | 17.7302(9)                  |
| <i>c</i> , Å                                  | 19.6163(8)                  | 20.2786(2)                  | 19.5830(8)                  | 21.2620(11)                 |
| α, deg                                        | 97.942(4)                   | 90                          | 97.879(3)                   | 107.8160(10)                |
| $\beta$ , deg                                 | 99.558(4)                   | 98.9410(10)                 | 99.594(3)                   | 99.7490(10)                 |
| γ, deg                                        | 99.523(4)                   | 90                          | 99.571(3)                   | 90.3430(10)                 |
| V, Å <sup>3</sup>                             | 1713.85(14)                 | 3471.99(5)                  | 1705.65(11)                 | 4348.4(4)                   |
| Ζ                                             | 2                           | 4                           | 2                           | 4                           |
| $d_{calcd}$ , g/cm <sup>3</sup>               | 1.426                       | 1.364                       | 1.174                       | 1.141                       |
| Absorption coefficient,<br>mm <sup>-1</sup>   | 2.759                       | 1.772                       | 0.215                       | 0.184                       |
| $F_{000}$                                     | 752                         | 1472                        | 652                         | 1624                        |
| Crystal size, mm                              | 0.30 x 0.20 x<br>0.03       | 0.40 x 0.40 x<br>0.10       | 0.29 x 0.23 x 0.20          | 0.58 x 0.36 x 0.18          |
| $\theta$ range for data collection, deg       | 2.86-30.03                  | 3.04-30.03                  | 2.97-27.56                  | 2.31-28.67                  |
| Index ranges                                  | -12<=h<=12                  | -17<=h<=17                  | -11<=h<=11                  | -16 <= h <= 16              |
|                                               | -14<=k<=14                  | -20<=k<=20                  | -13<=k<=13                  | -23 <= k <= 23              |
|                                               | -27<=l<=27                  | -28<=l<=28                  | -25<=l<=25                  | -28 <= 1 <= 28              |
| Reflections collected                         | 36918                       | 84557                       | 26185                       | 55120                       |
| Independent reflections                       | 10025                       | 10133                       | 7880                        | 22189                       |
| R <sub>int</sub>                              | 0.0793                      | 0.0346                      | 0.0811                      | 0.0338                      |
| Completeness to $\theta$ , %                  | 99.8                        | 99.8                        | 99.7                        | 99.6                        |
| Data / restraints /<br>parameters             | 10025 / 0 / 406             | 10133 / 0 / 408             | 7880 / 0 / 408              | 22189 / 0 / 995             |
| $S(F^2)$                                      | 1.014                       | 1.060                       | 1.041                       | 1.025                       |
| Final <i>R</i> indices $(I > 2\sigma(I))$     | R1 = 0.0454<br>wR2 = 0.0832 | R1 = 0.0198<br>wR2 = 0.0468 | R1 = 0.0722<br>wR2 = 0.1609 | R1 = 0.0459<br>wR2 = 0.1063 |
| <i>R</i> indices (all data)                   | R1 = 0.0623                 | R1 = 0.0242                 | R1 = 0.1194                 | R1 = 0.0700<br>wP2 = 0.1170 |
| Largest diff. peak and hole, e/Å <sup>3</sup> | 1.86 / -1.50                | 0.99 / -0.44                | 1.07 / -0.46                | 0.76 / -0.41                |

Table S1. Crystal data and structures refinement details for complexes 2, 3, 4, and 4<sup>THF</sup>.



**Fig. S1.** <sup>1</sup>H NMR spectrum of [2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CH]<sub>2</sub>Yb (**2**) (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



**Fig. S2.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2$ Yb (2) (100 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



**Fig. S3.**  ${}^{13}C{}^{-1}H$  HSQC without  ${}^{1}H$  decoupling NMR spectrum of [2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CH]<sub>2</sub>Yb (**2**) (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



**Fig. S4.**  ${}^{179}$ Yb ${}^{-1}$ H HSQC without  ${}^{1}$ H decoupling NMR spectrum of [2,2'-(4-MeC\_6H\_3NMe\_2)\_2CH]\_2Yb (2) (400 MHz, C\_6D\_6, 293 K).



**Fig. S5.** <sup>1</sup>H NMR spectrum of  $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Yb(THF)_n$  (2<sup>THF</sup>) (200 MHz, C<sub>6</sub>D<sub>6</sub>/THF-D<sub>8</sub> 5/1, 293 K).



**Fig. S6.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Yb(THF)_n$  (**2**<sup>THF</sup>) (50 MHz, C<sub>6</sub>D<sub>6</sub>/THF-D<sub>8</sub> 5/1, 293 K).



**Fig. S7.**  ${}^{13}C^{-1}H$  HSQC without  ${}^{1}H$  decoupling NMR spectrum of [2,2'-(4-MeC\_6H\_3NMe\_2)\_2CH]\_2Yb(THF)\_n ( ${\bf 2}^{THF}$ ) (400 MHz, C<sub>6</sub>D<sub>6</sub>/THF-D<sub>8</sub> 5/1, 293 K); \* - signals of residual protons and  ${}^{13}C$  of THF-D<sub>8</sub>.



**Fig. S8.**  ${}^{179}$ Yb ${}^{-1}$ H HSQC without  ${}^{1}$ H decoupling NMR spectrum of [2,2'-(4-MeC\_6H\_3NMe\_2)\_2CH]\_2Yb(THF)\_n ( ${\bf 2}^{THF}$ ) (400 MHz, C<sub>6</sub>D<sub>6</sub>/THF-D<sub>8</sub> 5/1, 293 K); \* - signals of residual protons of THF-D<sub>8</sub>.



Fig. S9. <sup>1</sup>H NMR spectrum of  $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Sm(3)$  (400 MHz,  $C_6D_6$ , 293 K).



**Fig. S10.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of  $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Sm$  (**3**) (100 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



Fig. S11. <sup>1</sup>H NMR spectrum of [2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CH]<sub>2</sub>Ca (4) (200 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



Fig. S12.  ${}^{16}C{}^{1}H{}$  NMR spectrum of  $[2,2]^{-}(4-MeC_{6}H_{3}NMe_{2})_{2}CH]_{2}Ca$  (4) (50 MHz,  $C_{6}D_{6}$ , 293 K).



**Fig. S13.**  ${}^{13}C^{-1}H$  HSQC without  ${}^{1}H$  decoupling NMR spectrum of [2,2'-(4-MeC\_6H\_3NMe\_2)\_2CH]\_2Ca (4) (400 MHz, C\_6D\_6, 293 K).



**Fig. S14.** <sup>1</sup>H NMR spectrum of  $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Ca(THF)_2$  (4<sup>THF</sup>) (200 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K); \* - signal of  $\beta$ -CH<sub>2</sub> THF protons overlaps with solvated hexane.



C<sub>6</sub>D<sub>6</sub>, 293 K)



**Fig. S16.** <sup>13</sup>C<sup>-1</sup>H HSQC without <sup>1</sup>H decoupling NMR spectrum of  $[2,2'-(4-MeC_6H_3NMe_2)_2CH]_2Ca(THF)_2$  (**4**<sup>THF</sup>) (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).

**Characterization of PhCH<sub>2</sub>CH(Ph)SiH<sub>2</sub>Ph.** Hydrosilylation product of *cis-* or *trans-*stilbenes by PhSiH<sub>3</sub> was isolated after column chromatography purification (silica gel,  $C_6H_6$ /Hexane 1/1) as colorless oily product. Elemental analysis calculated for  $C_{20}H_{20}Si$  (288.46 g·mol<sup>-1</sup>): C, 83.28; H, 6.99. Found: C, 83.40; H, 7.08. GC-MS: [M<sup>+</sup>]: 289.1 m/z. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 293 K): 2.89 (m, 1H, CH), 3.23 (d, <sup>3</sup>J<sub>HH</sub> = 7.9 Hz, 2H, CH<sub>2</sub>), 4.45 (m, <sup>1</sup>J<sub>SiH</sub> = 198 Hz, 2H, SiH), 7.11 (m, 4H, CH Ph), 7.16 (m, 2H, CH Ph), 7.25 (m, 4H, CH Ph), 7.34 (m, 2H, CH Ph), 7.41 (m, 3H, CH Ph) ppm. <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, 293 K): 34.3 (s, with <sup>29</sup>Si satellites, <sup>1</sup>J<sub>SiC</sub> = 50.3 Hz, SiCH), 37.7 (s, CH<sub>2</sub>), 125.5 (s, *p*-CH Ph), 126.0 (s, *p*-CH Ph), 127.9 (s, CH Ph), 128.1 (s, CH Ph), 128.2 (s, CH Ph), 128.4 (s, CH Ph), 128.7 (s, CH Ph), 129.9 (s, CH Ph), 131.1 (s, *ipso-*C SiPh), 135.8 (s, *ortho-C*H SiPh), 141.2 (s, *ipso-*C Ph), 142.2 (s, *ipso-*C Ph) ppm. <sup>29</sup>Si{<sup>1</sup>H} NMR (79.5 MHz, CDCl<sub>3</sub>, 293 K): -23.6 (s) ppm.



**Fig. S17.** <sup>1</sup>H NMR spectrum of PhCH<sub>2</sub>CH(Ph)SiH<sub>2</sub>Ph (400 MHz, CDCl<sub>3</sub>, 293 K).



**Fig. S18.**  ${}^{13}C{}^{1}H$  NMR spectrum of PhCH<sub>2</sub>CH(Ph)SiH<sub>2</sub>Ph (100 MHz, CDCl<sub>3</sub>, 293 K).



Fig. S19. <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum of PhCH<sub>2</sub>CH(Ph)SiH<sub>2</sub>Ph (79.5 MHz, CDCl<sub>3</sub>, 293 K).



**Fig. S20.** <sup>1</sup>H NMR spectrum of PhSiH<sub>3</sub> disproportionation reaction catalyzed by  $4^{\text{THF}}$  ([PhSiH<sub>3</sub>]:[ $4^{\text{THF}}$ ] = 50:1, 70 °C, 72 h) (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



**Fig. S21.** <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum of PhSiH<sub>3</sub> disproportionation reaction catalyzed by **4**<sup>THF</sup> ([PhSiH<sub>3</sub>]:[**4**<sup>THF</sup>] = 50:1, 70 °C, 72 h) (79.5 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K). \* – signal of 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph; <sup>#</sup> – signal if 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>3</sub>.



**Fig. S22.** <sup>1</sup>H NMR spectrum of 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



**Fig. S23.** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph (50 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K).



Fig. S24. <sup>1</sup>H NMR spectrum of the reaction mixture of 4 and PhSiH<sub>3</sub> ([4]:[PhSiH<sub>3</sub>] = 1:2) (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K). \* – signals of 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph; <sup>#</sup> – signals of 2,2'- (4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Dh; <sup>#</sup> – signals of 2,2'- (4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>3</sub>.



**Fig. S25.** <sup>29</sup>Si<sup>-1</sup>H HSQC NMR spectrum of the reaction mixture of **4** and PhSiH<sub>3</sub> ([**4**]:[PhSiH<sub>3</sub>] = 1:2) (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K). \* – signal of 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph; <sup>#</sup> – signal if 2,2'- (4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph; <sup>#</sup> – signal if 2,2'- (4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>3</sub>.



**Fig. S26.** <sup>1</sup>H NMR spectrum of the reaction mixture of  $\mathbf{4}^{\text{THF}}$  and PhSiH<sub>3</sub> ([ $\mathbf{4}^{\text{THF}}$ ]:[PhSiH<sub>3</sub>] = 1:2) (400 MHz, C<sub>6</sub>D<sub>6</sub>, 293 K). \* – signal of 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph; <sup>#</sup> – signal if 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>2</sub>Ph; <sup>#</sup> – signal if 2,2'-(4-MeC<sub>6</sub>H<sub>3</sub>NMe<sub>2</sub>)<sub>2</sub>CHSiH<sub>3</sub>.