Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Multiple Anti-counterfeiting Guarantees from Simple CaTiO₃:Pr³⁺, Er³⁺ Particles-

Multicolor Luminescence and a Multistate Luminescence Mode

Zhenbin Wang¹, Pengxiang Pei¹, Dongjie Bai¹, Shanshan Zhao¹, Xinyu Ma¹, Weisheng Liu^{*1}

1, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering,

Lanzhou University, Lanzhou, 730000, China

Corresponding author: liuws@lzu.edu.cn

Tel.: +86 / (0) 931-8915151

Fig. S1. XRD patterns of synthesized CaTiO₃:xPr³⁺ (0.0005 $\leq x \leq 0.0045$) samples.

Fig. S2. XRD patterns of synthesized CaTiO₃: $0.0025Pr^{3+}$, yEr^{3+} ($0.0005 \le y \le 0.0045$) samples.

Fig. S3. Excitation spectra of $Ca_{1-x}TiO_3:xPr^{3+}(0.0005 \le x \le 0.0045)$.

Fig. S4. Emission spectra of Ca_{1-x}TiO₃:xPr³⁺(0.0005≤x≤0.0045) showing variation of

emission intensity as a function of Pr^{3+} concentrations, $\lambda_{ex}=334$ nm. The optimal dopant concentration is found to be 0.25mol%, beyond which concentration quenching occurs and the emission intensity decreases dramatically^[2].

Fig. S5. Emission spectra of Pr^{3+} and Er^{3+} ($\lambda_{ex} = 378$ nm), showing an improved emission of Er^{3+} as increasing Er^{3+} concentration. Thus, the compromised concentration of y = 0.0025 was selected to produce a dual-emission from Pr^{3+} and Er^{3+} .

Fig. S6. PL spectra of CTO: $R^{3+}(R^{3+} = Pr^{3+}, Er^{3+})$ and CTO samples.

Fig. S7. CIE chromaticity diagram of the $CaTiO_3$:Pr³⁺, Er³⁺ sample under different wavelengths irradiation.

Fig. S8. (a) XRD pattern of the CTO:Pr³⁺,Er³⁺ after being heated with 1000°C. (b) XRD pattern of the CTO:Pr³⁺,Er³⁺ after being placed in tap water for 12 h

Table S1	(a).	The refinement	data	for	CaTiO ₃ .
	(

Crystal data	
Chemical formula	CaTiO ₃
Formula weight	260.96 g/mol
Crystalsystem	orthorhombic
Space group	P n m a (62)
	a=5.3782(2)Å,b=5.4389(3)Å
Unit cell dimensions	c=7.6380(1) Å
Volume	223.377(1) Å ³

Ζ	4
Density(calculated)	3.50354g/cm ³
X-ray diffractometer	Rigaku D/max-240
Temperature	298K
Theta range for data collection	10° to 80°
R _{wp}	14.0%
R _p	8.9%
χ^2	1.572

Table S1 (b). Atomic coordinates and isotropic displacement parameters for CaTiO₃.

Atom	Wyckoff	x/a	y/b	z/c	Fraction	U _{iso}
Ca ₁	4c	-0.006	0.036	0.250	1	0.025
Ti ₁	4b	0	0.5	0	1	0.025
O_1	4c	0.071	0.483	0.250	1	0.025
O ₂	8d	0.710	0.288	0.037	1	0.025

Table S3. TL parameters of CaTiO₃:Pr³⁺, Er³⁺.

Trap	$T_m(\mathbf{K})$	E(eV)
1	344	0.69
2	383	0.77

The trap depths can be calculated by the Urbach method^[3].

$$E = T_m / 500$$

where Tm is the peak temperature (in Kelvin).

Notes and referencers

[1]. Dai, P. P.; Li, C.; Zhang, X. T.; Xu, J.; Chen, X.; Wang, X. L.; Liu, Y. C. A single Eu²⁺-activated high-color-rendering oxychloride white-light phosphor for white-lightemitting diodes. *Light-Sci Appl*, **2016**, *5*, e16024-e16024.

[2]. Wang, J.; Lin, H.; Huang, Q.; Xiao, G.; Xu, J.; Wang, B; Wang, Y. Structure and luminescence behavior of a single-ion activated single-phased Ba₂Y₃(SiO₄)₃F: Eu white-light phosphor. *J. Mater. Chem. C*, **2017**, *5*, 1789-1797.

[3]. Hoerder, G. J.; Seibald, M.; Baumann, D.; Schröder, T.; Peschke, S.; Schmid, P. C.;
Patzig, C. Sr[Li₂Al₂O₂N₂]:Eu²⁺—A high performance red phosphor to brighten the future. *Nat. Commun*, **2019**, *10*, 1-9.