Electronic Supplementary Information

General approach to construct hierarchicalstructured porous Co-Ni bimetallic oxide for efficient oxygen evolution

Ping Li, *a,b Ran Chen, a,b Yunan Lin^{a,b} and Wenqin Li^{a,b}

^a School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.

^b Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, P. R. China.

E-mail: liping56@mail.sysu.edu.cn

Table of Contents

Figures S1 to S11	Pages 2-8
Table S1	Pages 9-10
References	Pages 10-12

Figure S1. (a,b) SEM images of the CoNi-DiEG prepared by using pure DiEG as solvent without adding methanol.

Figure S2. The EDX spectrum of the CoNi-DiEG precursor.

Figure S3. The TGA curve of the CoNi-DiEG precursor.

Figure S4. The EDX spectrum of the $CoNiO_x$.

Figure S5. The NLDFT pore size distribution curve of the $CoNiO_x$.

Figure S6. The TGA curves of various CoNi-polyol complexes: (a) CoNi-EG, (b) CoNi-TriEG, (c) CoNi-PDO, (d) CoNi-BDO, and (e) CoNi-PentaDO.

Figure S7. Characterizations of Co-DiEG precursor: (a) SEM image and (b) XRD pattern.

Figure S8. Characterizations of Co₃O₄: (a) SEM image and (b) XRD pattern.

Figure S9. Characterizations of Ni-DiEG precursor: (a) SEM image and (b) XRD pattern.

Figure S10. Characterizations of NiO: (a) SEM image and (b) XRD pattern.

Figure S11. (a) Co 2p, (b) Ni 2p, and (c) O 1s XPS spectra of the CoNiO_x before and after the electrochemical CP stability test.

Notes: For the XPS spectra of the CoNiO_x, the Co 2*p* (Figure S11a) and Ni 2*p* spectra (Figure S11b) are split into $2p_{3/2}$ and $2p_{1/2}$ doublets, due to the spin–orbit coupling, together with shakeup satellite peaks. And both Co $2p_{3/2}$ and Ni $2p_{3/2}$ spectra can be deconvoluted into two distinct metal species, i.e., Co²⁺ (781.3 eV) and Co³⁺ (779.4 eV), Ni²⁺ (854.2 eV) and Ni³⁺ (855.9 eV), indicating the coexistence of Co²⁺, Co³⁺, Ni²⁺ and Ni³⁺ in the sample.¹ In the O 1*s* spectrum (Figure S11c), three peaks can be clearly identified. The peak at ~529.3 eV is attributed to the lattice oxygen in the spinel oxide, the peak at ~530.9 eV is assigned to the surface defect sites with a low oxygen coordination, and the peak at ~532.5 eV can be assigned to the hydroxyl species.^{2,3}

Table S1. Comparison of the OER catalytic performance of our hierarchicalstructured porous $CoNiO_x$ to other recently reported high-performance OER catalysts in alkaline solution.

Catalyst	Mass loading (mg cm ⁻²)	Electrolyte	η@10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
CoNiO _x	0.2	0.1 M KOH	329 309 (after CP test)	66	this work
α -Ni(OH) ₂ spheres	0.2	0.1 M KOH	331	42	4
β -Ni(OH) ₂ plates	0.2	0.1 M KOH	444	111	4
Hollow Co ₃ S ₄ nanosheets	0.283	0.1 M KOH	363	90	5
Mn ₃ O ₄ /CoSe ₂	0.2	0.1 M KOH	450	49	6
N-graphene-CoSe ₂	0.2	0.1 M KOH	366	40	7
N-Co ₉ S ₈ /graphene	0.2	0.1 M KOH	409	82.7	8
Co ₃ O ₄ /C nanowire arrays	0.2	0.1 M KOH	290	70	9
Ordered mesoporous Co ₃ O ₄	0.12	0.1 M KOH	496-537	86-96	10
$Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-d}$	0.25	0.1 M KOH	362	48	11
FeNC sheets/NiO	0.24	0.1 M KOH	390	76	12
CoNC sheets/NiO	0.24	0.1 M KOH	410	80	12
Ultrathin NiCo ₂ O ₄ nanosheets	0.285	0.1 M KOH	415	N.A.	2
rGO@CoNiO _x	0.2	0.1 M KOH	320	45	3
NiFe-LDH/CNTs	0.2	0.1 M KOH	308	35	13
sea-urchin-like (Co _{0.54} Fe _{0.46})P ₂	0.2	0.1 M KOH	370	N.A.	14
Ag-CoSe ₂ nanobelts	0.2	0.1 M KOH	320	56	15

N-doped graphitic carbon	0.2	0.1 M KOH	380	75-80	16
P-doped graphitic C ₃ N ₄	0.2	0.1 M KOH	400	61.6	17
Graphitic C ₃ N ₄ nanosheets/carbon nanotubes	0.2	0.1 M KOH	370	83	18
IrO ₂ /C	0.2	0.1 M KOH	370	N.A.	16
Rutile RuO ₂	0.05	0.1 M KOH	> 470	N.A.	19
RuO ₂ /C	0.2	0.1 M KOH	380	157.5	8
RuO ₂	0.2	0.1 M KOH	387	90	4
Ni _x Co _{3-x} O ₄ nanowire arrays	2.3-2.7	1 M NaOH	370	59-64	20
Ni-Co oxide hierarchical nanosheets	N.A.	1 M NaOH	340	51	21
Amorphous NiCo _{2.7} (OH) _x nanocages	0.2	1 M KOH	350	65	22
NiCo LDH nanosheets	0.17	1 M KOH	367	40	23
rGO/CoNi-P	0.1	1 M KOH	314	60.0	24
CoP/NCNHP	N.A.	1 M KOH	310	70	25
CoP/rGO	0.28	1 M KOH	340	66	26

References:

1. I. Abidat, N. Bouchenafa-Saib, A. Habrioux, C. Comminges, C. Canaff, J. Rousseau, T. W. Napporn, D. Dambournet, O. Borkiewicz and K. B. Kokoh, *J. Mater. Chem. A*, 2015, **3**, 17433-17444.

2. J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan and Y. Xie, *Angew. Chem. Int. Ed.*, 2015, **54**, 7399-7404.

3. P. Li and H. C. Zeng, Adv. Funct. Mater., 2017, 27, 1606325.

4. M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang and Y. Yan, *J. Am. Chem. Soc.*, 2014, **136**, 7077-7084.

 W. Zhao, C. Zhang, F. Geng, S. Zhuo and B. Zhang, ACS Nano, 2014, 8, 10909-10919.

 M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng and S.-H. Yu, *J. Am. Chem. Soc.*, 2012, 134, 2930-2933.

7. M.-R. Gao, X. Cao, Q. Gao, Y.-F. Xu, Y.-R. Zheng, J. Jiang and S.-H. Yu, *ACS Nano*, 2014, **8**, 3970-3978.

 S. Dou, L. Tao, J. Huo, S. Wang and L. Dai, *Energy Environ. Sci.*, 2016, 9, 1320-1326.

9. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, *J. Am. Chem. Soc.*, 2014, **136**, 13925-13931.

10. X. Deng, W. N. Schmidt and H. Tüysüz, Chem. Mater., 2014, 26, 6127-6134.

11. J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and Y. Shao-Horn, *Science*, 2011, **334**, 1383-1385.

12. J. Wang, K. Li, H.-x. Zhong, D. Xu, Z.-l. Wang, Z. Jiang, Z.-j. Wu and X.-b. Zhang, *Angew. Chem. Int. Ed.*, 2015, **54**, 10530-10534.

13. M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei and H. Dai, *J. Am. Chem. Soc.*, 2013, **135**, 8452-8455.

14. A. Mendoza-Garcia, H. Zhu, Y. Yu, Q. Li, L. Zhou, D. Su, M. J. Kramer and S. Sun, *Angew. Chem. Int. Ed.*, 2015, **54**, 9642-9645.

15. X. Zhao, H. Zhang, Y. Yan, J. Cao, X. Li, S. Zhou, Z. Peng and J. Zeng, *Angew. Chem. Int. Ed.*, 2017, **56**, 328-332.

 Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi and K. Hashimoto, *Nat Commun*, 2013, 4, 2390.

 T. Y. Ma, J. Ran, S. Dai, M. Jaroniec and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2015, 54, 4646-4650.

18. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Ed., 2014, 53,

7281-7285.

19. Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, *J. Phys. Chem. Lett.*, 2012, **3**, 399-404.

20. Y. Li, P. Hasin and Y. Wu, Adv. Mater., 2010, 22, 1926-1929.

21. H.-Y. Wang, Y.-Y. Hsu, R. Chen, T.-S. Chan, H. M. Chen and B. Liu, *Adv. Energy Mater.*, 2015, **5**, 1500091.

22. J. Nai, H. Yin, T. You, L. Zheng, J. Zhang, P. Wang, Z. Jin, Y. Tian, J. Liu, Z. Tang and L. Guo, *Adv. Energy Mater.*, 2015, **5**.

H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and
S. Jin, *Nano Lett.*, 2015, 15, 1421-1427.

24. P. Li and H. C. Zeng, ACS Appl. Mater. Interfaces, 2019, 11, 46825-46838.

Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W.-C. Cheong, Z. Chen, Y. Wang, Y. Li,
Y. Liu, D. Wang, Q. Peng, C. Chen and Y. Li, *J. Am. Chem. Soc.*, 2018, 140, 2610-2618.

26. L. Jiao, Y.-X. Zhou and H.-L. Jiang, Chem. Sci., 2016, 7, 1690-1695.