# Electronic Supplementary Information

## Mechanism of Action of the Curcumin cis-Diammineplatinum(II) Complex as

### **Photocytotoxic Agent**

Eslam Dabbish, Gloria Mazzone, \* Nino Russo, Emilia Sicilia

Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende (CS), Italy

#### **Table of Contents**

- **Table S1:** Vertical excitation energies,  $\Delta E$  (eV), wavelength  $\lambda$  (nm), oscillator strengths (f) and main configuration (%) for curcumin and Platicur complex computed in water .... S3

| - | <b>Figure S6</b> : Energy profile for the conversion of ADD <sub>(1)</sub> in ADD <sub>(4)</sub> and the optimized structure of the involved transition state                                                                                             |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | <b>Figure S7:</b> Photophysical properties of curcumin: a) excited states adiabatic energies, b) SOC and $\Delta E(S_m-T_n)$ , c) vertical electron affinity VEA and ionization potential VIP (Type I photoreactions), d) Molecular Orbitals counter plot |
| - | Figure S8: Potential energy surface and a cut out of the optimized structures of all the stationary points intercepted along the GS curcumin release                                                                                                      |
| - | References                                                                                                                                                                                                                                                |

#### Table S1

| carcanin (ricar) and ration complex complex an water |     |      |                       |         |                   |                                    |  |  |  |
|------------------------------------------------------|-----|------|-----------------------|---------|-------------------|------------------------------------|--|--|--|
|                                                      | λ   | ΔΕ   | Main Configuration, % | $f^{a}$ | $\lambda^{exp,b}$ | Assignment                         |  |  |  |
| HCur                                                 |     |      |                       |         |                   |                                    |  |  |  |
| $S_1$                                                | 452 | 2.74 | H→L, 99               | 1.051   | 430               | ${}^{1}\pi\pi^{*}$                 |  |  |  |
| $S_2$                                                | 385 | 3.22 | H-1→L, <i>93</i>      | 0.143   |                   | ${}^{1}\pi\pi^{*}$                 |  |  |  |
| $S_3$                                                | 334 | 3.71 | H→L+1, <i>69</i>      | 0.169   | 358               | ${}^{1}\pi\pi^{*}$                 |  |  |  |
| $S_4$                                                | 309 | 4.01 | H-1→L+1, 54           | 0.268   |                   | $^{1}\pi\pi^{*}$                   |  |  |  |
| Platicur                                             |     |      |                       |         |                   |                                    |  |  |  |
| $S_1$                                                | 473 |      | H→L, 99               | 0.902   | 460               | <sup>1</sup> LC/ <sup>1</sup> LMCT |  |  |  |
| $S_2$                                                | 411 |      | H-1→L, <i>96</i>      | 0.334   | 435               | <sup>1</sup> LC/ <sup>1</sup> MLCT |  |  |  |
| $S_3$                                                | 330 |      | H→L+1, <i>48</i> ;    | 0.468   | 385               | <sup>1</sup> LC/ <sup>1</sup> MLCT |  |  |  |
|                                                      |     |      | H-4→L, <i>23</i>      |         |                   |                                    |  |  |  |
| $S_4$                                                | 319 |      | H-2→L+1, <i>82</i>    | 0.235   |                   | <sup>1</sup> MLCT                  |  |  |  |
|                                                      |     |      |                       |         |                   |                                    |  |  |  |

Vertical excitation energies,  $\Delta E$  (eV), wavelength  $\lambda$  (nm), oscillator strengths (f) and main configuration (%) for curcumin (HCur) and Platicur complex computed in water.

a. Only transitions with oscillator strength greater than 0.1 were included, b. experimental spectrum from ref. [1]





Energetic diagram of the highest occupied molecular orbitals (from H to H-3) and the lowest unoccupied molecular orbitals (from L to L+2) involved in the electronic transitions of **Platicur**. The pie charts represent the percentage of participation of each portion of the complex, platinum ( $\blacksquare$  Pt), curcumin ( $\blacksquare$  Cur) and ammonia ( $\blacksquare$  NH<sub>3</sub>) ligands, in the reported molecular orbitals.

# Figure S2











<sup>a</sup>Adiabatic energies









# Figure S7

| a)             | ΔE (eV)                                          | Main Confi                  | guration, %           | Character                              | d)   | 1                                       |                                    |                      |
|----------------|--------------------------------------------------|-----------------------------|-----------------------|----------------------------------------|------|-----------------------------------------|------------------------------------|----------------------|
| S <sub>1</sub> | 2.45                                             | H→L, 99                     |                       | <sup>1</sup> ππ*                       |      |                                         |                                    | L+1                  |
| S <sub>2</sub> | 2.97                                             | H-1→L, 93                   |                       | <sup>1</sup> ππ*                       | _    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                    | 7                    |
| T <sub>1</sub> | <b>1.61</b> ª                                    | H→L, 47;                    |                       | <sup>3</sup> ππ*                       |      | 7                                       | · ·                                |                      |
|                |                                                  | H→L+1, 47                   |                       | <sup>3</sup> лл*                       |      |                                         | <b>1</b>                           | P                    |
| T <sub>2</sub> | 2.08                                             | H→L, 51;                    |                       | <sup>3</sup> ππ*                       |      | - × • •                                 |                                    |                      |
|                |                                                  | H→L+1, 48                   |                       |                                        | _    |                                         |                                    | ~                    |
| T <sub>3</sub> | 2.74                                             | H-1→L, 76                   |                       | <sup>3</sup> ππ*                       |      | 1                                       | •••                                |                      |
| T4             | 2.87                                             | H→L+1, 49                   |                       | <sup>3</sup> лл*                       |      |                                         |                                    |                      |
| b)             | m,n SOC (c                                       |                             | m <sup>-1</sup> )     | ΔE S <sub>m</sub> -T <sub>n</sub> (eV) | -    |                                         |                                    | • Н                  |
|                | 1,1                                              | 5.4 · 1                     | 0-3                   | 0.85                                   |      | -                                       | • • •                              |                      |
|                | 1,2                                              | 5.4 · 1                     | 0-3                   | 0.37                                   |      | ۰ <b>کر</b> ه                           |                                    | H-1                  |
|                | 2,3                                              | 5.2 · 1                     | 0-2                   | 0.23                                   |      | × ø                                     |                                    | 2                    |
|                | 2,4                                              | 5.2 · 1                     | .0-2                  | 0.11                                   | _ `  |                                         |                                    |                      |
| c)             | <sup>b</sup> Photoprocess                        |                             | Requir                | ement                                  | VEA  | VIP                                     | VEA(T <sub>1</sub> )               | VIP(T <sub>1</sub> ) |
| 1.             | $^{3}\text{Ps} + ^{3}\text{O}_{2} \rightarrow 1$ | $Ps^{(+)} + O_2^{(-)}$      | VEA $({}^{3}O_{2}) +$ | VIP $(^{3}Ps) < 0$                     | 2.83 | 5.67                                    | -4.76                              | 3.74                 |
| 2.             | Ps (-). + ${}^{3}O_{2}$                          | • ${}^{1}Ps + O_{2}(-)$     | VEA $({}^{3}O_{2}) +$ | VEA ( <sup>1</sup> Ps) <0              | B    |                                         |                                    |                      |
| 3.             | $^{3}Ps + ^{1}Ps \rightarrow 1$                  | $Ps^{(+)} + Ps^{(-)}$       | VEA $(^{3}PS) +$      | VIP $(^{1}Ps) < 0$                     | Ð    |                                         |                                    |                      |
| 4.             | $^{3}Ps + ^{3}Ps \rightarrow I$                  | $P_{S}^{(+)} + P_{S}^{(-)}$ | VEA $(^{3}PS) +$      | VIP $(^{3}Ps) < 0$                     | B    |                                         | VEA( <sup>3</sup> O <sub>2</sub> ) | -3.16                |

<sup>a</sup> sufficient energy to promote the molecular oxygen transition ( ${}^{3}\Sigma_{g} \rightarrow {}^{1}\Delta_{g}$ ); <sup>b</sup> computed in water B3LYP/6-311+G\*\*.

Figure S8



## References

[1] Mitra, K.; Gautam, S.; Kondaiah, P.; Chakravarty. A. R. Angew. Chem. Int. Ed. 2015, 54, 13989-13993.