Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Anticancer potency of novel organometallic Ir(III) complexes with phosphines derived from

fluoroquinolones encapsulated in polymeric micelles

Sandra Kozieł,^a Urszula K. Komarnicka,^{*a} Aleksandra Ziółkowska,^a Agnieszka Skórska-Stania,^b Barbara

Pucelik, ^c Michał Płotek, ^{b,d} Victor Sebastian^{e,f}, Alina Bieńko, ^a Grażyna Stochel, ^b and Agnieszka Kyzioł^{*b}

^a.Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland

^b Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland

^{c.}Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.

^d Faculty of Conservation and Restoration of Works of Art, Jan Matejko Academy of Fine Arts in Krakow, Lea 27-29, 30-052 Krakow, Poland

e. Departmentof Chemical Engineering, Aragon Institute of Nanoscience (INA), The Aragón Materials Science Institute (ICMA), University of Zaragoza, Campus Río Ebro-Edificio I+D, Mariano Esquillor S/N, 50018 Zaragoza, Spain ^fNetworking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28-029 Madrid, Spain

Corresponding author e-mail address:urszula.komarnicka@chem.uni.wroc.pl, kyziol@chemia.uj.edu.pl

Graphical abstract

A549 and DU-145 cell lines

Parameters	IrPCp·CHCl ₃	IrPLm·1.5CHCl ₃	IrPNr·2CHCl ₃
Moiety formula	IrCl ₅ PN ₃ O ₃ C ₄₁ H ₄₅	IrCl _{6.5} PN ₃ O ₃ C _{41.5} H _{46.5}	$IrCl_8PN_3O_3C_{41}H_{46}$
Formula weight (g·mol ⁻¹)	1047.22	1126.91	1154.58
Crystal description	yellow plate	light orange plate	yellow prism
Crystal size (mm)	0.20 x 0.20 x 0.02	0.10 x 0.10 x 0.05	0.30 x 0.30 x 0.20
Temperature (K)	130	100	130
Type of radiation	Cu Ka	Μο Κα	Cu Ka
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	р1	I 2/a	$P 2_1/n$
a (Å)	9.0544(4)	24.6249(3)	10.1356(2)
b (Å)	11.8197(5)	8.35470(1)	17.3727(3)
c (Å)	20.8951(8)	44.3459(5)	25.6237(4)
α (°)	85.841(3)	90	90
β (°)	86.837(3)	104.3440(1)	93.1370(1)°
γ (°)	67.930(4)	90	90
Volume (Å ³)	2065.94(16)	8839.03(18)	4505.13(14)
Ζ	2	8	4
Density calc. (g/cm ³)	1.683	1.694	1.702
Absorption coeff. (mm^{-1})	9.983	3.501	10.818
F(000)	1044	4488	2296
$\theta_{\min} - \theta_{\max}$ (°)	4.042 to 71.700	2.215 to 31.772	3.075 to 71.574
	$-11 \leftarrow h \leftarrow 11$	$-32 \leftarrow h \leftarrow 35$	$-12 \leftarrow h \leftarrow 12$
hkl range	$-14 \leftarrow k \leftarrow 14$	$-11 \leftarrow k \leftarrow 11$	$-21 \leftarrow k \leftarrow 21$
e	$-25 \leftarrow 1 \leftarrow 25$	$-63 \leftarrow 1 \leftarrow 64$	$-31 \leftarrow 1 \leftarrow 31$
Reflections collected	28428	154041	69550
Independent reflections	7969	13616	8730
R	0.0886	0.0395	0 1085
Completeness to $\theta_{c,u}$ (%)	99.9	99.9	99.8
A harmonic and a second s			
Absorption correction type	multi-scan	multi-scan	multi-scan
T_{max} and T_{min}	1.000 and 0.219	1.000 and 0.871	1.000 and 0.158
Data/restraints/parameters	7969 / 0 / 504	13616 / 3 / 541	8730 / 0 / 533
Goodness of fit F ²	1.026	1.059	1.108
$R_1, wR_2 [I > 2\sigma(I)]$	0.0440, 0.1081	0.0321, 0.0716	0.0642, 0.1514
R_1 , w R_2 (all data)	0.0544, 0.1169	0.0394, 0.0734	0.0710, 0.1560
Largest diff. peak and hole (e Å ⁻³)	1.919 -1.931	3.325, -0.922	2.658, -2.947

Table S1. Crystallographic experimental details.

	IrPCp·CHCl ₃	IrPLm-1.5CHCl ₃	IrPNr·2CHCl ₃
$C^{1}-C^{5}$	1.428(8)	1.403(5)	1.447(12)
C^1 - C^2	1.432(8)	1.450(5)	1.420(13)
$C^{2}-C^{3}$	1.455(8)	1.431(4)	1.422(14)
C ³ -C ⁴	1.410(8)	1.429(4)	1.439(13)
C^4 - C^5	1.457(8)	1.454(4)	1.434(12)
C(Cp*ring)-C(Cp*CH ₃)	0.9600	1.495(8)	0.9600
Ir^1-C^1	2.159(5)	2.226(3)	2.226(8)
Ir ¹ –C ²	2.153(5)	2.169(3)	2.219(8)
Ir ¹ –C ³	2.251(5)	2.172(3)	2.158(9)
Ir ¹ –C ⁴	2.236(5)	2.149(3)	2.179(8)
Ir ¹ –C ⁵	2.177(5)	2.235(3)	2.139(8)
Ir ¹ –CCp*(average)	2.219(5)	2.190(2)	2.184(2)
Ir ¹ -Ccentroid	1.824	1.820	1.814
Ir ¹ –P ¹	2.2919(1)	2.308(6)	2.310(6)
Ir ¹ –Cl ¹	2.4195(1)	2.418(6)	2.411(6)
Ir ¹ –Cl ²	2.4114(1)	2.408(6)	2.416(2)
P ¹ C ¹¹	1.863(5)	1.854(3)	1.864(8)
P1-C41	1.827(5)	1.814(3)	1.817(8)
P ¹ -C ⁵¹	1.823(5)	1.826(3)	1.835(8)
P ¹ –Ir ¹ –Cl ¹	90.45(5)	90.18(2)	89.43(7)
P ¹ –Ir ¹ –Cl ²	90.03(4)	86.75(2)	86.77(7)
Cl ¹ –Ir ¹ –Cl ²	86.04(4)	87.52(2)	89.45(8)
Ccentroid-Ir ¹ -P ¹	129.78	132.99	132.93
Ccentroid-Ir ¹ -Cl ¹	124.56	123.04	132.93
Ccentroid-Ir ¹ -Cl ²	123.42	123.13	132.93
$Ir^1 - P^1 - C^{11}$	116.34(17)	111.27(9)	112.1(2)
$Ir^1 - P^1 - C^{41}$	111.59(18)	116.09(9)	116.4(3)
Ir ¹ –P ¹ –C ⁵¹	115.83(18)	106.68(12)	111.0(3)
C^{11} - P^1 - C^{41}	100.4(2)	103.49(12)	107.1(4)
C^{11} - P^1 - C^{51}	101.2(2)	103.49(12)	104.8(4)
C^{41} – P^1 – C^{51}	110.1(2)	106.10(12)	104.6(4)

Table S2.Selected bond lengths (Å) and angles (°) for crystallized complexes.

Ccentroid – center of gravity of cyclopentadienyl anion; Ir¹–Ccp* (average) – average calculated from: Ir¹–C¹, Ir¹–C², Ir¹–C³, Ir¹–C⁴, Ir¹-C⁵ C(Cp*ring)-C(Cp*CH₃) – average calculated from: C¹-C^{1A}, C²-C^{2A}, C³-C^{3A}, C⁴-C^{4A}, C⁵-C^{5A}

IrPCp·CHCl₃

IrPLm·1.5CHCl₃

	Dimer Ir	PCp [1]	PSf [2]	PLm [3]	PNr [4]	IrPCp	IrPSf	IrPLm	IrPNr
P ¹		-27.4	-35.9	-28.8	-27.5	-1.30	-3.06	-1.82	-1.38
H^{1}	1.69 s					1.35 d (2.2)	1.33 d (2.2)	1.34 d (2.2)	1.35 d (2.2)
H^{11}		3.29 d (2.9)	3.93 bs	2.80 bs	3.29 d (2.8)	4.07 s	4.25 s	4.15 dd (40.0;16.0)	4.07 s
$H^{12, 15}$		3.37	3.20 m	2 95 3 15	3.36 m	2.99 bt (4.8)	2.45 m	2 14 3 14 m	2.97 bt (4.6)
H ^{13, 14}		2.90	3.93 m	m	2.89 m	2.39 bt (4.8)	2.80-3.07 m	2.14-3.14 m	2.39 bt (4.6)
H^{16}			0.94 d (5.9)	0.97 d (5.7)			0.72 d(6.4)	0.62 d (6.3)	
H^{17}			0.94 d (3.9)	.94 u (<i>3.9)</i>			0.72 d (0.4)		
H^{42}		7 2 4 7 47	7 20 7 65	7 02 7 60	7 22 7 46	8.00-8.11 m	7.98-8.13 m	7.99-8.15 m	8.00-8.11 m
H ^{43, 44}		/.34-/.4/	1.29-1.03	/.03-/.00	/.33-/.40	7.44-7.53 m	7.43-7.51 m	7.39-7.56 m	7.42-7.54 m
H ⁶³		7.95 d (13.8)	6.46 bs	7.84 d (11.4)	7.95 d (13.0)	7.92 d (13.3)	6.41 bd	7.87 dd (12.0; 1.7)	7.96 d (13.2)
H^{67}		8.71 s	8.62 s	8.52 s	8.63 s	8.72 s	8.61 s	8.55 s	8.62 s
H^{69}		7.34-7.47			6.82 d (6.8)	7.16 d (7.1)			6.64 d (6.9)
H^{70}		15.01 s	14.54 bs	14.65 bs	15.13 bs	15.02 s	14.65 bs	14.68 s	15.09 s
H^{71}		3.53 m	3.93 bs	4.39 d (3.6)	4.31 m	3.47 m	3.87 m	4.40 qd (7.2; 3.3)	4.25 q (7/2)
${ m H}^{72}$		1 18 m	1.07.1.21 m	1.48 t (3.7)	1.56 m	1 11 1 22 m	1.04.1.20 m	1.50 t (7.0)	1.54 t (7.3)
H ⁷³		1.10 111	1.0/-1.21 III			1.11-1.33 111	1.04-1.20 11		

Table S3. Cumulative NMR data for ligands and iridium-complexes.

[1] A. Bykowska, R. Starosta, A. Brzuszkiewicz, B. Bażanów, M. Florek, N. Jackulak, J. Król, J. Grzesiak, K. Kaliński, M. Jeżowska-Bojczuk, *Polyhedron*, 2013, **60**, 23-29.

[2] U. K. Komarnicka, R. Starosta, K. Guz-Regner, G. Bugla-Płoskońska, A. Kyzioł, M. Jeżowska-Bojczuk, J. Mol. Struct., 2015, 1096, 55-63.

[3] U. K. Komarnicka, R. Starosta, A. Kyzioł, M. Płotek, M. Puchalska, M. Jeżowska-Bojczuk, J. Inorg. Biochem., 2016, 165, 25-35.

[4] A. Bykowska, R. Starosta, U. K. Komarnicka, Z. Ciunik, A. Kyzioł, K. Guz-Regner, G. Bugla-Płoskońska, M. Jeżowska-Bojczuk, New J. Chem., 2014, 38, 1062-1071.

Fig. S2. ¹H NMR spectra for IrPCp (298 K, CHCl₃-d)

Fig. S3. ¹H NMR spectra for IrPSf (298 K, CHCl₃-d)

Fig. S4. ¹H NMR spectra for IrPLm (298 K, CHCl₃-d).

Fig. S5. ¹H NMR spectra for IrPLm (298 K, CHCl₃-d).

Fig S6. Time-dependent ¹H NMR spectroscopic stability study for **IrPCp** in 80% DMSO- $d_6/20\%$ D₂O over 48 h.

Fig. S7. Time-dependent ¹H NMR spectroscopic stability study for **IrPLm** in 70% DMSO- $d_6/30\%$ D₂O over 48 h.

Fig. S8. Time-dependent ¹H NMR spectroscopic stability study for **IrPLm** in 80% DMSO- $d_6/20\%$ D₂O over 48 h.

Fig. S9. Time-dependent ¹H NMR spectroscopic stability study for **IrPNr** in 70% DMSO- $d_6/30\%$ D₂O over 48 h.

Fig. S10. Time-dependent ¹H NMR spectroscopic stability study for **IrPNr** in 80% DMSO- $d_6/20\%$ D₂O over 48 h.

Fig. S11. Time-dependent 1H NMR spectroscopic stability study for **IrPSf** in 70% DMSO-d6/30% D2O over 48 h.

Fig. S12. Time-dependent ¹H NMR spectroscopic stability study for **IrPSf** in 80% DMSO- $d_6/20\%$ D₂O over 48 h.

Fig. S13. Stability of the all complexes (**IrPNr**, **IrPLm**, **IrPCp**, **IrPSf**) in cellular medium (DMEM with 2% DMSO; during 72h experiments).

Fig. S14. Full ESI(+)MS spectrum of IrPNr.

Fig. S15. Experimental and simulated spectra of $[Ir(\eta^5-Cp^*)PNr + CH_3OH]^+$

Fig. S16. Full ESI(+)MS spectrum of IrPSf.

Fig. S17. Experimental and simulated spectra of $[Ir(\eta^5-Cp^*)PSf + CH_3OH]^+$

Fig. S18. Full ESI(+)MS spectrum of IrPCp.

Fig. S19. Experimental and simulated spectra of $[Ir(\eta^5-Cp^*)PCp + CH_3OH]^+$

Fig. S20. Full ESI(+)MS spectrum of IrPLm.

Fig. S21. Experimental and simulated spectra of $[Ir(\eta^5-Cp^*)PLm + CH_3OH]^+$

Fig. S22. Excitation spectra of IrPCp, IrPNr, IrPLm and IrPSf

Table S4. Values of IC_{50} [μ M] (concentration of a drug required to inhibit the growth of 50% of the cells) for CT26, A549, MCF7, PANC-1, DU-145, HEK293T cells after 24h and 24h + 48h treatment with the studied compounds and cisplatin as reference.

$1C_{50} [\mu M] \pm 5D;24h$							
	CT26	A549	MCF7	PANC-1	DU-145	HEK293T	
IrPCp	_*	68.8±1.7	65.7±2.8	43.0±1.3	11.8±1.1	42.1±2.1	
IrPSf	_*	64.8±2.8	61.8±4.1	40.3±4.1	9.1±0.5	44.1±1.2	
IrPLm	_*	69.7±4.1	64.5±2.2	48.1±4.3	11.3±0.9	46.0±1.6	
IrPNr	_*	71.4±1.6	68.8±5.3	42.6±8.1	12.9±2.1	41.8±1.7	
cisplatin	>100	>100	51.9±4.6	>100	>100	21.0±1.8	
$IC_{50} \ [\mu M] \pm SD; 24h + 48h$							
IrPCp	6.4±0.3	29.5±0.7	35.0±0.9	8.7±0.3	4.8±0.1	28.5±1.5	
IrPSf	4.1±0.7	26.7±1.6	29.3±0.2	7.8±0.6	3.5±0.8	23.0±1.7	
IrPLm	5.8±0.2	27.4±1.7	33.7±3.8	8.1±1.1	5.1±0.4	28.0±1.7	
IrPNr	5.6±0.4	29.1±1.2	31.7±0.3	8.3±1.3	5.5±0.2	21.4±1.2	
cisplatin	80.4± 2.3	71.7±3.7	17.7±8.6	74.5±2.3	65.5±3.6	10.3±2.1	

* no available data

Fig. S23. Percentage analysis [%] of the number live, early/late apoptotic and necrotic cells after 24h + 48h of incubation of A549 and Du-145 cell lines with IrPCp, IrPNr, IrPSf, IrPLm in c = 100 μ M. Scatter plots: left bottom – live cells, right bottom – early apoptotic cells, right top – late apoptotic cells, left top – necrotic cells.

Fig. S24. Time-dependency of final intracellular iridium concentration expressed as ng Ir per mg protein after 24h and 24h* (24h + 48h) of incubation with the A549, MCR7, PANC-1, DU-145 and HEK293T cell lines for IrPCp, IrPNr, IrPSf, IrPLm complexes in $c = 1 \mu M$.

Fig. S25. Co-localization analysis performed with ImageJ plugin - Coloc2 which implements and performs the pixel intensity correlation over space.

Fig. S26. Influence of studied complexes (IC_{50}) on intensity of JC-10 fluorescence in treated DU-145 cells. Alteration in MMP is given as an emission ratio 570 nm/530 nm. (ctrl – untreated cells, ciprofloxacin – a negative control, gentamicin – a positive control).

Table S5. Hydrodynamic diameter and Zeta potential determined by DLS technique as well as loading content and encapsulation efficiency determined by ICP-MS technique for selected Pluronic P-123 formulations.

Formulation	Hydrodynamic diameter [nm]	Zeta potential	$LC \pm S.D.$	EE ± S.D. [%]
IrPCp_M	19 ± 1 (PDI = 0.5 ± 0.1)	-1.5 ± 0.4	19.5 ± 2.9	99.5 ± 1.2
IrPNr_M	18 ± 2 (PDI = 0.4 ± 0.1)	-1.6 ± 0.3	29.8 ± 2.2	98.0 ± 0.5

Fig. S27. Cyclic voltammograms of iridium(III) complexes (1 mM), recorded with 0.1 M tetrabutyl ammonium perchlorate (TBAP) as supporting electrolyte in DMF solution. Scan rates (10 mVs⁻¹). The potentials were referenced to the $Fc^{0/+}$ redox couple.

Fig. S28. Cyclic voltammetric trace of **IrPSf**(1 mM) as a function of scan rate, recorded with recorded with 0.1 M tetrabutyl ammonium perchlorate (TBAP) as supporting electrolyte in DMF solution. Scan rates $1 - 100 \text{ (mV s}^{-1)}$. Potential (V) versus Fc^{0/+}.

Fig. S29. Cyclic voltammetric trace of **IrPCp**(1 mM) as a function of scan rate, recorded with recorded with 0.1 M tetrabutyl ammonium perchlorate (TBAP) as supporting electrolyte in DMF solution. Scan rates $1 - 100 \text{ (mV s}^{-1})$. Potential (V) versus Fc^{0/+}.

Fig. S30. Cyclic voltammetric trace of **IrPCp**(1 mM) as a function of scan rate, recorded with recorded with 0.1 M tetrabutyl ammonium perchlorate (TBAP) as supporting electrolyte in DMF solution. Scan rates $1 - 100 \text{ (mV s}^{-1)}$. Potential (V) versus Fc^{0/+}.

Fig. S31. Cyclic voltammetric trace of **IrPCp**(1 mM) as a function of scan rate, recorded with recorded with 0.1 M tetrabutyl ammonium perchlorate (TBAP) as supporting electrolyte in DMF solution. Scan rates $1 - 100 \text{ (mV s}^{-1})$. Potential (V) versus Fc^{0/+}.

Fig. S32. CVvoltammograms for ferrocene in DMF in the range of potentials from -01 V to 1.2 V. Scan rate: 10 mV s⁻¹.