Supporting Information (SI)

Preparation of Bi₂MoO₆/Ti₃C₂ MXene Heterojunction Photocatalyst for Fast Tetracycline

Degradation and Cr(VI) Reduction

Danxia Zhao^a and Chun Cai * ^a

^a Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, P. R.

China*

•

Tel.: +86-25-84315514; Fax: +86-25-84315030 ; e-mail: c.cai@njust.edu.cn

Section S1: Experimental, Characterization, Photocatalytic measurement Methods.

Fig.S1 Schematic of the Ti₃C₂ nanosheet and Bi₂MoO₆/Ti₃C₂ composite synthesis.

Fig. S2 N_2 adsorption-desorption isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution (inserted one) of Bi₂MoO₆ and the Bi₂MoO₆/Ti₃C₂ samples.

Fig. S3 (a), UV–vis diffuse reflectance spectra of Bi_2MoO_6 , and Bi_2MoO_6/Ti_3C_2 composites with different compositions, (b) plots of $(\alpha hv)^2$ vs (hv) for Bi_2MoO_6 .

Figure S4. (a) XPS-VB spectra of Bi₂MoO₆; (b) Mott-Schottky plot of Bi₂MoO₆.

Figure S5. The pseudo-first-order kinetics fitting curves and apparent rate constants over different catalysts (a) TC; (b) Cr(VI).

Fig. S6 Proposed intermediates and degradation routes of TC with light-induced h^+ , •OH and •O₂⁻.

Figure S7. The UV–vis absorption spectral changes of Cr(VI) solution over the BT-30 sample at pH of (a) 6.0, and (b)10.0. Reaction conditions: Cr(VI) concentration = 15 mg/L, catalyst dosage=0.5 g/L, 15W white LED lamp.

Figure S8. Stability test of photodegradation of TC and Cr(VI) over BT-30 (a).

Figure S9. XRD (a), TEM images (b) before and after the photocatalytic reaction.

Figure S10. Charge distribution of the adsorption models.

Figure S11. Transient photocurrent measurements of Bi₂MoO₆, Bi₂MoO₆/Ti₃C₂ composite (BT-30) and LBT-30.

Table S1. Specific surface area, pore size and pore volume of as-prepared samples.

Table S2. Binding energies of Ti 2p in Ti₃C₂ and BT-30.

Section S1.

Experimental Methods

Preparation of Ti₃C₂ MXene

Typically, 2 g Ti₃AlC₂ powders were slowly added into 40 mL40 wt % HF solution and then stirred at room temperature for 72 h. The precipitate was centrifuged and washed by D.I. water several times, and then the obtained Ti₃C₂ MXene powder was dried under vacuum at 60 °C. The obtained dried sample was re-dispersed in 20 mL of DMSO with stirring at room temperature overnight. The suspension was then centrifuged and washed four times with D.I.water. The collected solid was dispersed in deionized water at a mass ratio of 1: 100 and sonicated for 5 hours. The suspension was then centrifuged at 3500 rpm for 5 h to remove unexfoliated residue. Finally, the supernatant of Ti₃C₂ nanosheets was obtained. The concentration of the resulting supernatant was measured as 1 mg mL⁻¹. The obtained Ti₃C₂ MXene powder has not been sonicated labeled as layer Ti₃C₂.

Preparation of Bi₂MoO₆/Ti₃C₂

To prepare of Bi_2MoO_6/Ti_3C_2 composites, a certain amount of Ultrathin Ti_3C_2 nanosheets, 0.3 g CTAB and 0.970 g of $Bi(NO_3)_3 \cdot 5H_2O$ were dispersed into 70 mL D.I. water and sonicated for 30 min. After that, 0.242 g of $Na_2MoO_4 \cdot 2H_2O$ was added to the reacted system. After magnetically stirring for 6 h and adjusting pH to 7, the mixture was transferred to Teflon-lined autoclave and heated to 180 °C for 16 h. The grayish yellow precipitations were obtained. The different weight ratio of Bi_2MoO_6 and Ti_3C_2 was set as 500:10, 500:30 and 500:50, which marked as BT-10, BT-30 and BT-50 respectively. For comparison, the weight ratio of Bi_2MoO_6 and Layer Ti_3C_2 was set as 500:30, which labeled as LBT-30. 2D Bi_2MoO_6 were prepared under the same conditions without Ti_3C_2 .

Characterization of photocatalysts

X-ray diffractometry (XRD) using a Shimadzu XRD-6000 diffractometer with Cu K α irradiation. Scanning electron microscopy (SEM) images was performed using a Hitachi S-4800. TEM images were taken using a PHILIPS Tecnai 12 microscope operating at 120 kv. Energy Dispersive X-ray Spectroscopic analysis (EDS) was performed with a JEM-2010(HR) transmission electron microscope at an acceleration voltage of 200kV. High Resolution Transmission electron microscopy (HRTEM) was performed on Philips-FEI Tecnai G2 F20 operating at 300kv. Nitrogen adsorption-desorption analysis was conducted using a Micromeritics ASAP 2020 at 77 K. The specific surface areas were calculated by the Brunauer-Emmett-Teller (BET) method. In addition, X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi spectrometer, using an Al K α X-ray source (1486.6 eV of photons), which was calibrated by setting the C 1s peak to 284.80 eV. The UV - Vis diffuse reflectance spectra of the catalysts were recorded on a UV - Vis spectrometer (Lambda 750) within the range of 200 - 1100 nm.

Evolution).

Electrochemical measurements

Electrochemical and photoelectrochemical measurements were carried out on an electrochemical workstation (CHI 660E, Shanghai) with a standard three-electrode system. The powder coated on indium-tin-oxide (ITO) glass substrate was applied as the working electrode. 10 mg powder was suspended into 1 mL absolute ethanol and then the slurry was dropwise added on a ITO substrate ($15mm \times 30 mm$). The working electrode was exposed to air for 10 h to remove the ethanol. Platinum wire and Ag/AgCl electrode were used as the counter electrode and reference electrode, respectively. The electrolyte was 0.1 M Na₂SO₄ solution and illumination source was a 300 W Xe lamp providing simulated solar light.

ESR experiment

The ·OH and ·O₂⁻ radical signals in solution during the photocatalytic process under visible light ($\lambda >$ 420 nm) were determined using electron spin resonance (ESR; JES FA200).

Computational Details

The functional of gradient approximation (GGA) and Perdew, Burke, and Ernzerhof (PBE) was used throughout to describe the electron–electron exchange and correlation interactions. For the k-point sampling of Brillouin zone integrals, a $(2 \times 1 \times 2)$ k-point grid was used, and meanwhile, cutoff energy 500 eV was used as the maximum value from all the cutoffs specific to each element in this system. The convergence tolerance of an energy of 10^{-5} eV was taken, and the relaxation of the unit cell, including the atoms, was performed by Geometry Optimization. And the formula to calculate the adsorption energy is that

$$E_{\rm ad} = E_{\rm tot} - E_{\rm a} - E_{\rm s}$$

Where Ead is the adsorption energy, and E_{tot} is the total energy of adsorbed molecules and UIO. E_a and E_s is the the energy of adsorbed molecules and Ti₃C₂/Bi₂MoO₆, respectively.

Photocatalytic experiments

Photocatalytic degradation of Cr (VI, 15 mg/L) and Tetracycline (TC, 15 mg/L) were performed as follows. In each experiment, 10 mg of catalyst were added to the above pollutant solutions (20 mL). Before the reaction, the suspension was magnetically stirred for 40 min in the dark to attain adsorption–desorption equilibrium. During the white LED lamp (50W, $\lambda > 400$ nm) irradiation, aliquots (2 mL) were obtained at specific times from the reaction suspension and centrifuged to remove the photocatalysts. The concentration of TC-HCl was measured at 356 nm and the content of Cr(VI) was determined by the diphenylcarbazide colorimetry method at 540 nm using a UV-vis spectrophotometer. In addition, the pH of Cr(VI) initial solution was adjusted by 1MH₂SO₄ or 1M NaOH solution.

The intermediates produced in the photodegradation process of TC were identified by high performance liquid chromatography-mass spectrometry (LC/MS). Mobile phase was a mixture of

acetonitrile and formic acid (0.1%) with a flow rate of 0.25mL/min. The injection volume was 5.0 μ L. The fragment voltage was 135 V and the capillary voltage was 2800 V. The mass range of the MS is m/z 100-600.

Free radical trapping experiments were based on the above experimental operations. Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na), potassium persulfate ($K_2S_2O_8$), tert-butyl alcohol (TBA) and benzoquinone (BQ) as scavengers for photogenerated holes, photogenerated electrons, hydroxyl radicals and superoxide radicals, respectively.

Fig.S1 Schematic of the Ti_3C_2 nanosheet and Bi_2MoO_6/Ti_3C_2 composite synthesis.

Fig. S2 N_2 adsorption-desorption isotherms and Barrett-Joyner-Halenda (BJH) pore size distribution (inserted one) of Bi_2MoO_6 and the Bi_2MoO_6/Ti_3C_2 samples.

Fig. S3 (a), UV–vis diffuse reflectance spectra of Bi_2MoO_6 , and Bi_2MoO_6/Ti_3C_2 composites with different compositions, (b) plots of $(\alpha hv)^2$ vs (hv) for Bi_2MoO_6 .

Fig. S5. The pseudo-first-order kinetics fitting curves and apparent rate constants over different catalysts (a) TC; (b) Cr(VI).

Fig. S6 Proposed intermediates and degradation routes of TC with light-induced h^+ , •OH and •O₂⁻.

Fig. S7.The UV–vis absorption spectral changes of Cr(VI) solution over the BT-30 sample at pH of (a) 6.0, and (b)10.0. Reaction conditions: Cr(VI) concentration = 15 mg/L, catalyst dosage=0.5 g/L, 150W white LED lamp.

Fig. S8 Stability test of photodegradation of TC and Cr(VI) over BT-30 (a).

Fig. S9. XRD (a), TEM images (b) before and after the photocatalytic reaction.

Fig. S10. Charge distribution of the adsorption models.

Fig. S11. Transient photocurrent measurements of Bi_2MoO_6 , Bi_2MoO_6/Ti_3C_2 composite (BT-30) and LBT-30.

Table S1. Specific surface area, pore size and pore volume of as-prepared samples.

	samples	$S_{BET} (m^2 g^{-1})$	Pore size (nm)	Total pore volume (cm ³ g ⁻¹)
_	Bi ₂ MoO ₆	20.70	0.055	10.70
	BT-10	26.84	0.047	7.069
	BT-30	33.24	0.084	9.79
	BT-50	25.40	0.071	11.11
_	MBT-10	25.93	0.057	9.10

Table S2. Binding energies of Ti 2p in Ti_3C_2 and BT-30.

BE (eV) of Ti_3C_2	BE (eV) of UBT-30	Assigned to	Reference
454.8		Ti (3) 2P _{3/2}	1, 2
455.6	455.2	Ti (2) 2P _{3/2} Ti-C	1
456.6	456.4	Ti (2) 2P _{3/2}	2
459.2	459.0	Ti (4) 2P _{3/2} TiO ₂	3
461.1	461.0	Ti (2) 2P _{1/2} Ti-C	4
462.3		Ti (3) 2P _{1/2}	5
464.9	464.3	Ti (4) 2P _{1/2} TiO ₂	6

References

- V. Schier, H. J. Michel and J. Halbritter, ARXPS-analysis of sputtered TiC, SiC and Ti_{0.5}Si_{0.5}C layers, *Fresenius' J. Anal. Chem.*, 1993, 346, 227-232.
- F. Santerre, M. A. El Khakani, M. Chaker and J. P. Dodelet, Properties of TiC thin films grown by pulsed laser deposition, *Appl. Surf. Sci.*, 1999, 148, 24-33.
- T. Sultana, G. L. Georgiev, G. Auner, G. Newaz, H. J. Herfurth and R. Patwa, XPS analysis of laser transmission micro-joint between poly (vinylidene fluoride) and titanium, *Appl. Surf. Sci.*, 2008, 255, 2569-2573.
- S. Cao, B. Shen, T. Tong, J. Fu and J. Yu, 2D/2D Heterojunction of Ultrathin MXene/Bi₂WO₆ Nanosheets for Improved Photocatalytic CO₂ Reduction, *Adv. Funct. Mater.*, 2018, 28, 1800136.
- 5. J. Low, L. Zhang, T. Tong, B. Shen and J. Yu, TiO₂/MXene Ti₃C₂ composite with excellent photocatalytic CO₂ reduction activity, *J. Catal.*, 2018, **361**, 255-266.
- T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong, H. Chen, X. Yi, J. Yuan, X. Xia, C. Liu and S. Luo, Ag₃PO₄/Ti₃C₂ MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance, *Appl. Catal.*, *B*, 2018, 239, 545-554.