Supporting Information

Carbon supported PdNi alloy nanoparticles on SiO₂ nanocages with

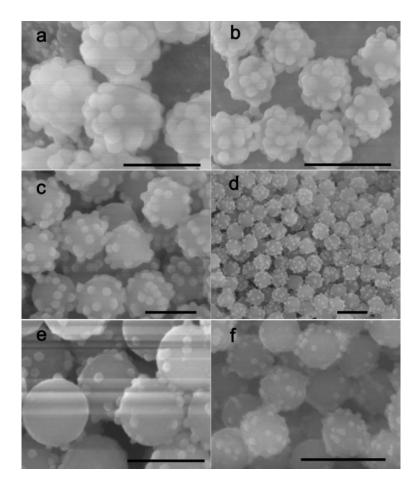
enhanced catalytic performance

Min Zhang*a, Yang Ling, a Libin Liu^{b*}, Jingli Xua, Jiaxing Li^c, Qunling Fang^{d*}.

^{a.} College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China. E-mail: zhangmin@sues.edu.cn.

^{b.} School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. E-mail: Ibliu@qlu.edu.cn

^{c.} Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei, PR China


^{d.} School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China Email:fql.good@hfut.edu.cn

Synthesis of SiO₂@C-AgNi and SiO₂@C-AuNi

In a typical synthesis, 0.02 g of as-prepared SiO₂@C-Ni was initially dispersed in 10 mL of ethanol to form a uniform suspension via ultrasonication. Then, 35 mL of aqueous solution containing 3 mg of AgNO₃ was added. Then, this reaction solution was transferred into a 100 mL three-necked flask with mechanical stirring and heated at 65 °C for 3 h. After cooling, the product was collected by centrifugation and washed with water and ethanol for several times before drying at 50 °C overnight. The preparation of SiO₂@C-AuNi was basically the same as that of SiO₂@C-AgNi except the AgNO₃ was replaced with HAuCl₄.

Catalytic degradation of methylene blue

The reduction of methylene blue (MB) was carried out in a quartz cuvette at room temperature. 0.2 mg of the as-prepared catalysts was added into a solution with MB (10 mL, 20mg/L). Then, 10 mg of NaBH₄ was added. The reaction progress was monitored by using a UV-vis absorption spectrometer (UV-2450, Shimadzu) in the scanning range of 450-800 nm at room temperature.

Fig. S1 SEM image of CPS@SiO₂ with the amount of CPS 25 mg (a, b), 100 mg (c, d), 150 mg (e, f). Scale bars: 300 nm in (a, c, e), and 500 nm in (b, d, f).

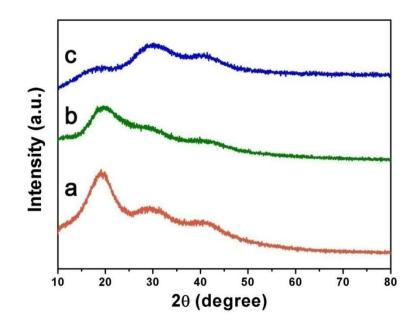
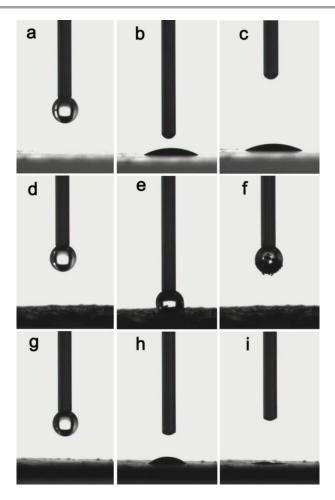
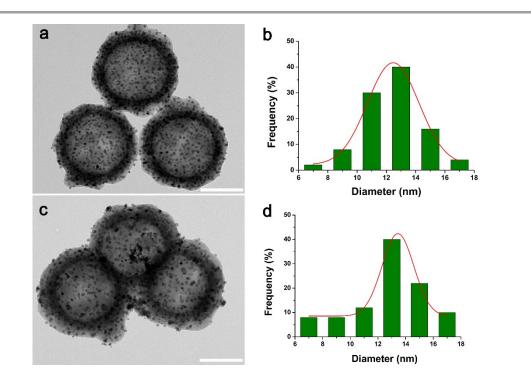




Fig. S2 XRD diffraction patterns of CPS (a); CPS@SiO₂ (b) and CPS@SiO₂@RF-Ni²⁺ (c).

Fig. S3 Photographs of water droplets on surfaces of CPS@SiO₂@RF-Ni²⁺ (a, b, c), SiO₂@C-Ni (d, e, f) and SiO₂@C-PdNi (g, h, i).

Fig. S4 (a, c) TEM images of SiO₂@C-Ni and SiO₂@C-PdNi respectively; (b, d) the distribution curve of Ni NPs diameter (b, SiO₂@C-Ni and d, SiO₂@C-PdNi); Scale bars: 200 nm in (a, c).

Sample	The average diameter of Ni NPs (nm)	
SiO₂@C-Ni	12.34	
SiO ₂ @C-PdNi	12.83	

Table S1 the average diameter of Ni NPs

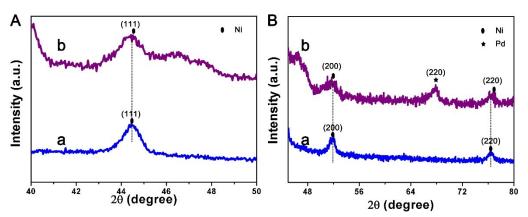


Fig. S5 Enlarged XRD diffraction patterns of SiO₂@C-Ni(a) and SiO₂@C-PdNi (b).

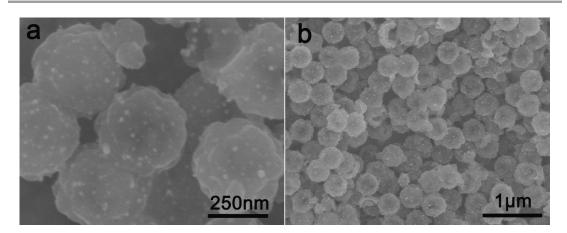


Fig. S6 SEM images of the SiO₂@C-PdNi (1mg).

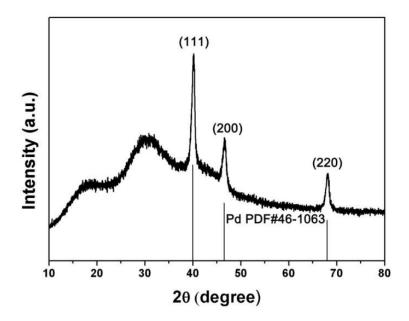
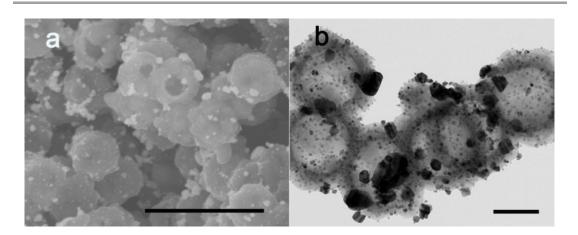
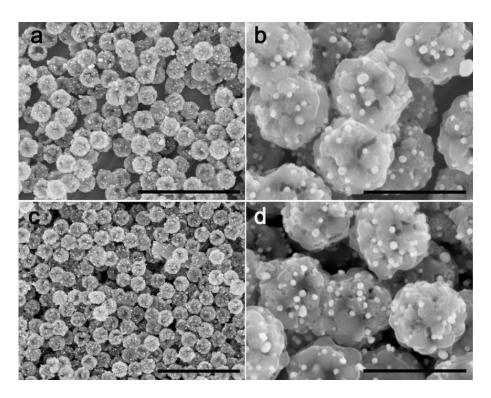




Fig. S7 XRD diffraction patterns of SiO₂@C-PdNi(10mg).

Fig. S8 SEM and TEM images of SiO₂@C-PdNi (10mg). Scale bars: 1 μm in (a), and 200 nm in (b).

Fig. S9 SEM images of SiO₂@C-AgNi (a, b) and SiO₂@C-AuNi (c, d). Scale bars: 2 μm in (a, c), and 500 nm in (b, d).

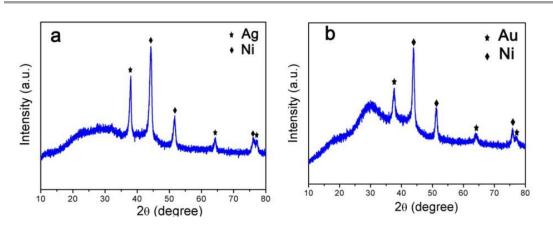
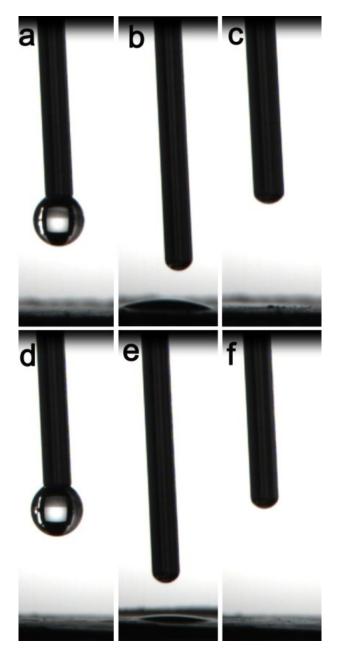
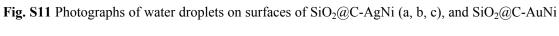




Fig. S10 XRD diffraction patterns of SiO₂@C-AgNi(a), SiO₂@C-AuNi(b). (Ag: JCPDS no. 04-0783, Au: JCPDS no. 04-0784).

(d, e, f).

Catalyst	Ni(µg/mg)	Pd (µg/mg)
SiO ₂ @C-Ni	143.6	-
SiO ₂ @C-PdNi	49.31	43.97

Samples	K (×10 ⁻³ s ⁻¹)	$\kappa (\times 10^{-3} \text{mg}^{-1} \text{s}^{-1})$	References
SiO ₂ @C-Ni	1.79	62.33	This work
SiO ₂ @C-PdNi	4.56	244.42	This work
Ag/Cu	6.70	74	46
Ag/Si	38.41	142.46	47
Ni/C	6.26	20.9	48
Ag@Pd-Graphene	8.67	86.7	49
AuPd	5.2	74	50
Cu ₂ O-Cu-CuO	10.4	20.7	51
PtPdBi	4.3	287	52
Fe@Au-ATPGO	1.4	400	53

Table S3 A full comparison of the activity parameter κ of SiO2@C-Ni and SiO2@C-PdNi hollowhybrid composites with other noble metal and no-noble catalysts

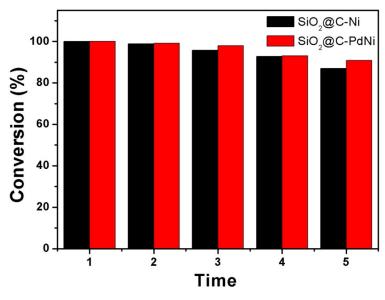
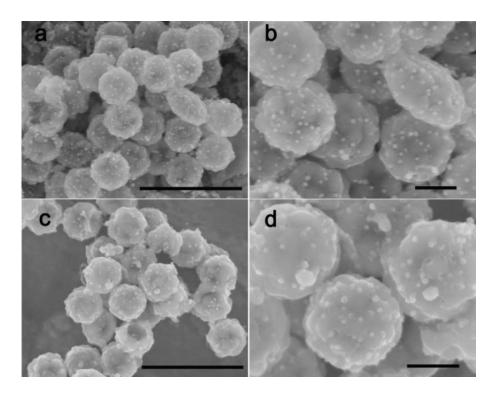
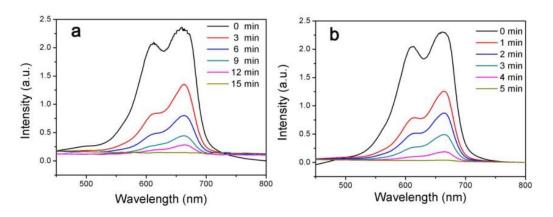
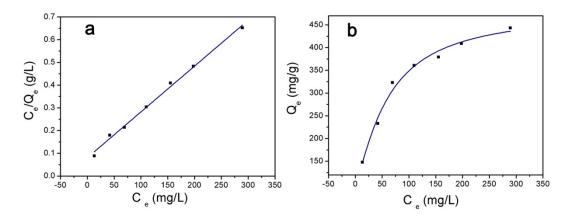


Fig. S12 cycle test of the SiO₂@C-Ni and SiO₂@C-PdNi.

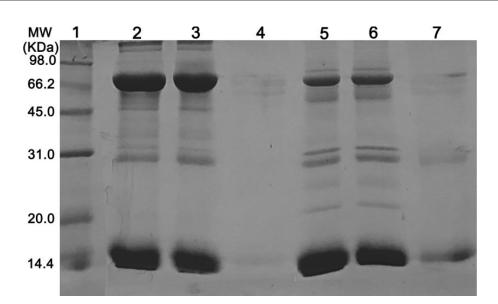

Fig. S13 SEM images of SiO₂@C-Ni (a, b) and SiO₂@C-PdNi (c, d) after five catalytic. Scale bars: 1 μ m in (a, c), and 200 nm in (b, d).

Fig. S14 UV-Vis absorption spectra of MB during the reduction catalyzed by SiO₂@C-Ni composite (a) and SiO₂@C-PdNi (b).

Fig. S15 Linear fitting of adsorption isotherms plots Langmuir model (a), and adsorption isotherm of BHb on $SiO_2(a)C$ -Ni the solution containing 20 mM phosphate at pH 7.0-8.0 (b).

Fig. S16 SDS-PAGE analysis of adsorption by SiO₂@C-Ni composites from solution. Lane 1, marker; lane 2, 1 mg·mL⁻¹ of BHb and BSA binary solution; lane 3, the supernant BHb and BSA solution after treated with SiO₂@C-Ni composites; lane 4, the eluted BHb and BSA mixture by 0.2 g·mL⁻¹ 2-methylimidazole solution; lane 5, diluted 100-fold human whole blood; lane 6, supernant human whole blood solution after treated by SiO₂@C-Ni composites; lane 7, the eluted 100-fold human whole blood by 0.2 g·mL⁻¹ 2-methylimidazole solution.

46. Y. Sun, F. Zhang, L. Xu, Z. Yin and X. Song, Roughness-controlled copper nanowires and Cu nanowires-Ag heterostructures: synthesis and their enhanced catalysis, *Journal of Materials Chemistry A*, 2014, **2**, 18583-18592.

47. Z. Zhang, C. Shao, Y. Sun, J. Mu, M. Zhang, P. Zhang, Z. Guo, P. Liang, C. Wang and Y. Liu, Tubular nanocomposite catalysts based on size-controlled and highly dispersed silver nanoparticles assembled on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol, *Journal of Materials Chemistry*, 2011, **22**, 1387-1395.

48. Y. Yang, Y. Ren, C. Sun and S. Hao, Facile route fabrication of nickel based mesoporous carbons with high catalytic performance towards 4-nitrophenol reduction, *Green Chemistry*, 2014, 16, 2273.

49. C. H. Liu, X. Q. Chen, Y. F. Hu, T. K. Sham, Q. J. Sun, J. B. Chang, X. Gao, X. H. Sun and S. D. Wang, One-pot environmentally friendly approach toward highly catalytically active bimetalnanoparticle-graphene hybrids, *Applied Materials & Interfaces*, 2013, **5**, 5072-5079.

50. J. Zhang, C. Hou, H. Huang, L. Zhang, Z. Jiang, G. Chen, Y. Jia, Q. Kuang, Z. Xie and L. Zheng, Surfactant-concentration-dependent shape evolution of Au-Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron, *Small*, 2013, **9**, 538-544.

51. A. K. Sasmal, S. Dutta and T. Pal, A ternary Cu₂O-Cu-CuO nanocomposite: a catalyst with intriguing activity, *Dalton transactions*, 2016, **45**, 3139-3150.

52. Y. Y. Shen, Y. Sun, L. N. Zhou, Y. J. Li and E. Yeung, Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction, *Journal of Materials Chemistry A*, 2014, **2**, 2977-2984.

53. V. K. Gupta, N. Atar, M. L. Yola, Ü. Z and L. Uzun, A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds, *Water Research*, 2014, **48**, 210-217.