## **Supporting Information**

Acid-Directed Morphology Control of Molybdenum Carbide Embedded in Nitrogen Doped Carbon Matrix for Enhanced Electrocatalytic Hydrogen Evolution

Jing Wang <sup>a</sup>, Siwei Li<sup>a\*</sup>, Jing Hu<sup>a</sup>, Siqi Niu<sup>a</sup>, Yuzhi Li<sup>a</sup>, Ping Xu<sup>a, b\*</sup>

<sup>a</sup> MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

<sup>b</sup> Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen 518055, China

\* E-mail: pxu@hit.edu.cn; swli@hit.edu.cn

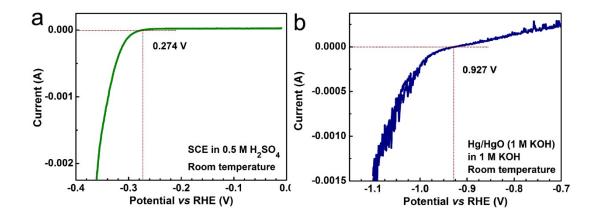
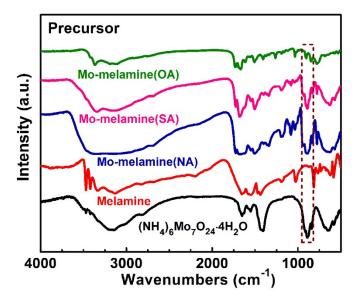




Fig. S1 Calibration curves of reference electrodes. (a) saturated calomel electrode (SCE) in  $0.5 \text{ M H}_2\text{SO}_4$  solution and (b) Hg/HgO (1.0 M KOH) electrode in 1.0 M KOH at room temperature.

Before electrochemical measurement, all the reference electrodes should to be calibrated to guarantee the veracity and reliability of test results <sup>S1</sup>. In the calibration process, Pt sheet (purchased from Aldrich) were used as working and counter electrodes, SCE and Hg/HgO (1.0 M KOH) electrode were applied as reference electrodes in 0.5 M H<sub>2</sub>SO<sub>4</sub> solution and 1.0 M KOH, respectively. Before calibration, H<sub>2</sub> was led continuously into the solution for 30 min to saturate the solution with hydrogen. Then, calibration curves in 0.5 M H<sub>2</sub>SO<sub>4</sub> and 1.0 M KOH were obtained with a scan rate of 1 mV/s at room temperature, as shown in Figure S1. The corrected potentials of SCE and Hg/HgO electrode are 0.274 V and 0.927 V *vs* RHE, respectively.



**Fig. S2** FTIR spectra of as-prepared Mo-melamine(OA), Mo- melamine (SA), Mo- melamine (NA) precursors.

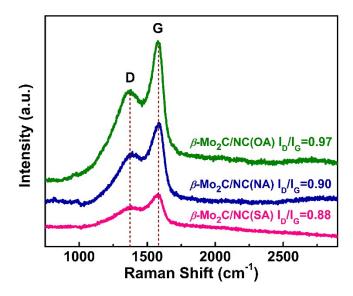
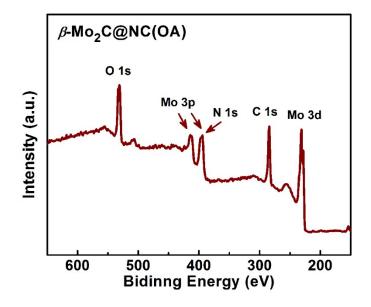
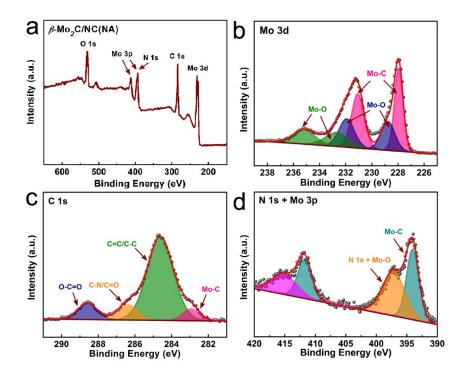
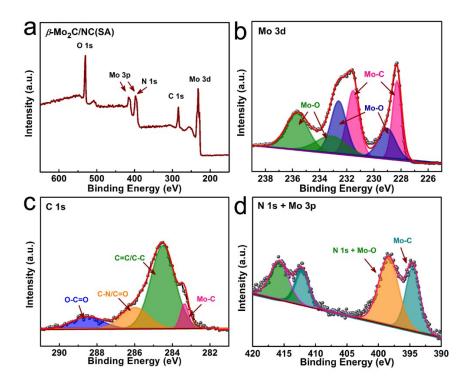
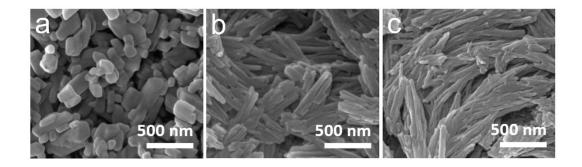



Fig. S3 Raman spectra for as-prepared  $\beta$ -Mo<sub>2</sub>C/NC(OA),  $\beta$ -Mo<sub>2</sub>C/NC(SA),  $\beta$ -Mo<sub>2</sub>C/NC(NA).



Fig. S4 Survey XPS spectrum of  $\beta$ -Mo<sub>2</sub>C/NC(OA).



**Fig. S5** (a) Survey XPS spectrum of  $\beta$ -Mo<sub>2</sub>C/NC(NA); High-resolution XPS spectra of (b) Mo 3d, (c) C 1s and (d) N 1s - Mo 3p of  $\beta$ -Mo<sub>2</sub>C/NC(NA).



**Fig. S6** (a) Survey XPS spectrum of  $\beta$ -Mo<sub>2</sub>C/NC(SA); High-resolution XPS spectra of (b) Mo 3d, (c) C 1s and (d) N 1s-Mo 3p of  $\beta$ -Mo<sub>2</sub>C/NC(SA).



**Fig. S7** SEM images of precursor for (a)  $\beta$ -Mo<sub>2</sub>C/NC(OA), (b)  $\beta$ -Mo<sub>2</sub>C/NC(NA) and (c)  $\beta$ -Mo<sub>2</sub>C/S-NC(SA)

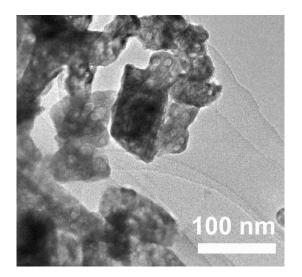



Fig. S8 High-magnifed TEM images of  $\beta$ -Mo<sub>2</sub>C/NC(OA).

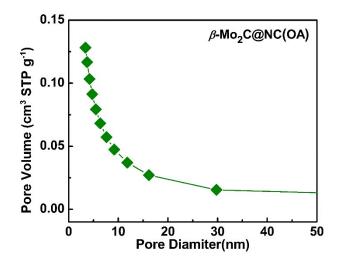



Fig. S9 Pore size distribution diagram of as-prepared  $\beta$ -Mo<sub>2</sub>C/NC(OA).

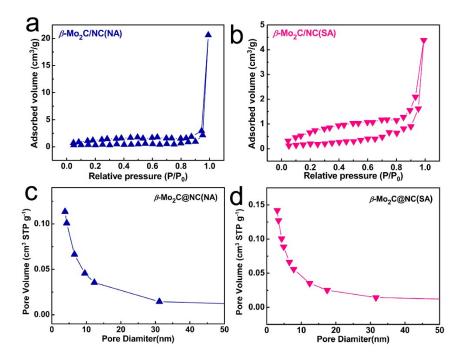



Fig. S10 (a, b) Nitrogen absorption and desorption diagrams and (c, d) pore size distribution diagrams of as-prepared  $\beta$ -Mo<sub>2</sub>C/NC(NA),  $\beta$ -Mo<sub>2</sub>C/NC(SA).

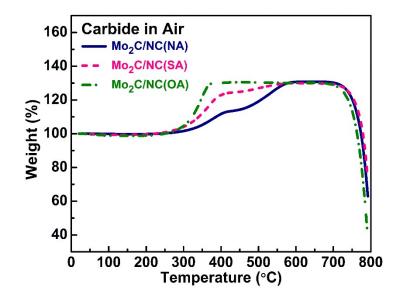
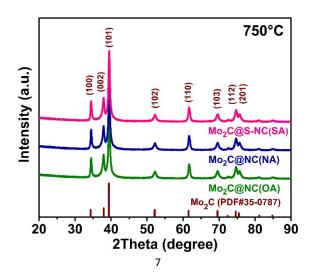
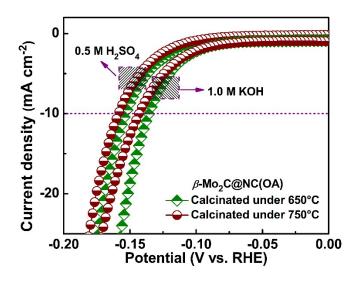
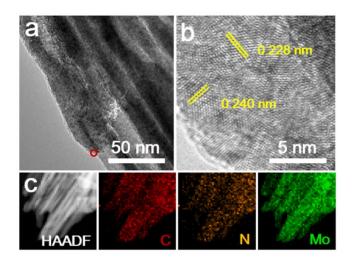




Fig. S11 TGA curves for carbide of Mo<sub>2</sub>C/NC(OA), Mo<sub>2</sub>C/NC(SA), Mo<sub>2</sub>C/NC(NA).


As shown in Figure S10, Mo<sub>2</sub>C nanoparticles were oxidized to MoO<sub>3</sub> during the TGA measurement in oxygen atmosphere, followed by the consumption of carbon and dopants. When the temperature rises to 600°C, all the substances convert to only MoO<sub>3</sub>. The weight percent of Mo<sub>2</sub>C in as-prepared samples is estimated according to the following equation:

$$m\% (Mo_2C) = residual mass * M(Mo_2C)/2M(MoO_3)$$


$$= 130.8 \text{ wt.}\% * 204/(2*144) = 92.6 \text{ wt.}\%$$



**Fig. S12** XRD patterns of  $\beta$ -Mo<sub>2</sub>C/NC(OA),  $\beta$ -Mo<sub>2</sub>C/NC(NA) and  $\beta$ -Mo<sub>2</sub>C/NC(SA) samples



**Fig. S13** Polarization curves after *i*R correction in 0.5 M  $H_2SO_4$  (a) and 1.0 M KOH (b) for Mo<sub>2</sub>C/NC(OA) obtained at 650°C and 750°C.



**Fig. S14** (a) TEM images, (b) HRTEM images, (c) HAADF and corresponding element mapping of  $\beta$ -Mo<sub>2</sub>C/NC(NA).

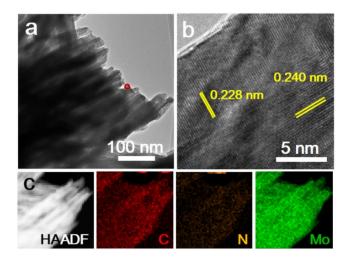
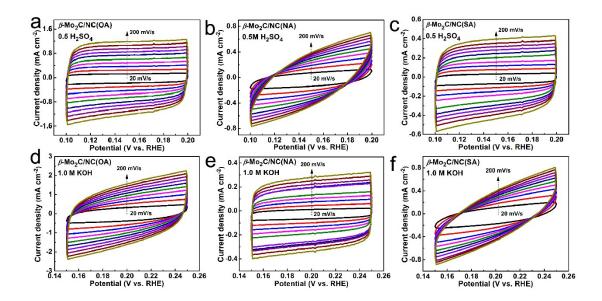



Fig. S15 (a) TEM images, (b) HRTEM images, (c) HAADF and corresponding element mapping of  $\beta$ -Mo<sub>2</sub>C/NC(SA).


 Table S1. Overpotential and Tafel slope of previously reported Mo<sub>2</sub>C-based

 electrocatalysts in acidic and alkaline condition.

.

|         | Synthesize method | Mass loading           | Overpotential(mV)          |       | Tafel slope     |       |      |
|---------|-------------------|------------------------|----------------------------|-------|-----------------|-------|------|
| Samples |                   | (mg cm <sup>-2</sup> ) | (-10 mA cm <sup>-2</sup> ) |       | $(mV dec^{-1})$ |       | Ref. |
|         |                   |                        | 0.5 M                      | 1.0 M | 0.5 M           | 1.0 M | -    |

|                                         |                                       |      | $H_2SO_4$ | КОН | H <sub>2</sub> SO <sub>4</sub> | КОН  |              |
|-----------------------------------------|---------------------------------------|------|-----------|-----|--------------------------------|------|--------------|
| β-Mo <sub>2</sub> C-<br>NC              | Acid-<br>Assisted                     | 0.19 | 152       | 135 | 58                             | 52   | This<br>work |
| Mo <sub>2</sub> C/NC<br>F               | Dopamine-<br>polymerized              | 0.28 | 144       | 100 | 55                             | 65   | S2           |
| Mo <sub>2</sub> C<br>nanobelts          | Two-step                              | 0.50 | 140       | 110 | 51.3                           | 49.7 | <b>S</b> 3   |
| Co <sub>4</sub> Mo <sub>2</sub> @<br>NC | Physical mixing                       | 0.35 | -         | 218 | -                              | 73.5 | S4           |
| Pure β-<br>Mo <sub>2</sub> C            | impregnatio<br>n                      | 1.0  | -         | 130 | -                              | 66.5 | S5           |
| MoC-<br>Mo <sub>2</sub> C/PN<br>CDs     | MOF-<br>derived                       | 0.40 | -         | 121 | -                              | 60   | S6           |
| Mo/Co@N<br>-C                           | MOF-<br>derived                       | 0.70 | 187       | 157 | 82                             | 148  | S7           |
| NP-Mo <sub>2</sub> C                    | carburization                         | 0.21 | 210       | -   | 64                             | -    | <b>S</b> 8   |
| Ni/                                     | 1                                     |      |           |     |                                |      |              |
| Mo <sub>2</sub> C-<br>NCNFs             | electrospinni<br>ng                   | 1.4  | 195       | 143 | 77.4                           | 57.8 | S9           |
| MoC–<br>Mo <sub>2</sub> C               | molybdate<br>reacting with<br>aniline | 0.14 | 126       | 120 | 43                             | 42   | S10          |



**Fig. S16** Cyclic voltammetry curves of  $\beta$ -Mo<sub>2</sub>C/NC(OA),  $\beta$ -Mo<sub>2</sub>C/NC(SA),  $\beta$ -Mo<sub>2</sub>C/NC(NA) under different scan rate. These data were used to generate the plots showing the extraction of the  $C_{dl}$  for different samples shown in Figure 4 and Figure 5 in the main text.

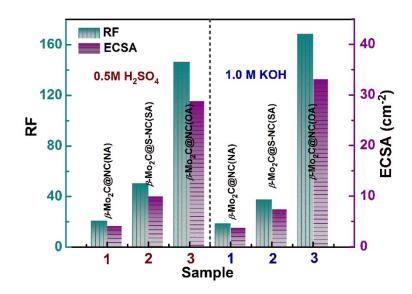



Fig. S17 Comparison of the ECSA and RF for as-prepared catalysts

**ECSA calculation:** 

ECSA= $C_{dl}/C_s$ , in which  $C_s$  is the specific capacitance, which is equal to 0.040 mF/cm<sup>2</sup> for a smooth electrode surface. Then the roughness factors (RF) were obtained by dividing the ECSA by the geometric area of the GCE.

| Catalasta                         | $0.5 \text{ M H}_2 \text{SO}_4$ |                                 | 1.0 M KOH                      |                                 |  |
|-----------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------|--|
| Catalysts                         | $R_{\rm s}\left(\Omega\right)$  | $R_{\rm ct}\left(\Omega\right)$ | $R_{\rm s}\left(\Omega\right)$ | $R_{\rm ct}\left(\Omega\right)$ |  |
| $\beta$ -Mo <sub>2</sub> C/NC(OA) | 5.44                            | 0.45                            | 5.87                           | 0.38                            |  |
| $\beta$ -Mo <sub>2</sub> C/NC(SA) | 7.43                            | 1.86                            | 6.32                           | 1.87                            |  |
| $\beta$ -Mo <sub>2</sub> C/NC(NA) | 5.14                            | 3.07                            | 5.56                           | 1.55                            |  |

**Table S2**. The fitting data of  $R_s$  and  $R_{ct}$  for as-prepared catalysts

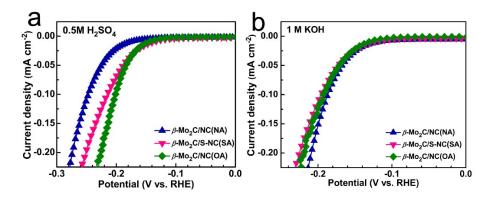



Fig. S18 ECSA-calibrated LSV curves for as-prepared catalysts.

## References

S1. S. Q. Niu, S. W. Li, Y. C. Du, X. J. Han, P. Xu, How to reliably report the

overpotential of an electrocatalyst, ACS Energy Lett., 2020, 5, 1083-1087.

S2. Y. Huang, Q. F. Gong, X. N. Song, K. Feng, K. Q. Nie, F. P. Zhao, Y. Y. Wang, Min Zeng, J. Zhong, Y. G. Li, Mo<sub>2</sub>C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution, *ACS Nano*, 2016, **10**, 11337–11343.

S3. S. Y. Jing, L. S. Zhang, L. Luo, J. J. Lu, S. B. Yin, P. K. Shen, P. Tsiakaras, N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction, *Appl. Catal.*, *B*, 2018, **224**, 533–540.

S4. J. Jiang, Q. X. Liu, C. M. Zeng, L. H. Ai, Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions, *J. Mater. Chem. A*, 2017, **5**, 16929.

S5. J. N. Xing, Y. Li, S. W. Guo, T. Jin, H. X. Li, Y. J. Wang, L. F. Jiao, Molybdenum carbide in-situ embedded into carbon nanosheets as efficient bifunctional electrocatalysts for overall water splitting, *Electrochim. Acta*, 2019, **298**, 305–312.

S6. X. F. Lu, L. Yu, J. T. Zhang, X. W. Lou, Ultrafne dual-phased carbide nanocrystals confned in porous nitrogen-doped carbon dodecahedrons for effcient hydrogen evolution reaction, *Adv. Mater.*, 2019, **30**, 1900699.

S7. C. Wu, D. Liu, H. Li, J. H. Li, Molybdenum carbide-decorated metallic cobalt@

nitrogen-doped carbon polyhedrons for enhanced electrocatalytic hydrogen evolution, *Small*, 2018, **14**, 1704227.

S8. D. Z. Wang, T. Y. Liu, J. C. Wang, Z. Z. Wu, N, P (S) Co-doped Mo<sub>2</sub>C/C hybrid electrocatalysts for improved hydrogen generation, *Carbon*, 2018, **139**, 845–852.

S9. M. X. Li, Y. Zhu, H. Y. Wang, C. Wang, N. Pinna, X. F. Lu, Ni strongly coupled with Mo<sub>2</sub>C encapsulated in nitrogen-doped carbon nanofbers as robust bifunctional catalyst for overall water splitting, *Adv. Energy Mater.*, 2019, **9**, 1803185.

S10. H. L. Lin, Z. P. Shi, S. N. He, X. Yu, S. N. Wang, Q. S. Gao, Y. Tang, Heteronanowires of MoC–Mo<sub>2</sub>C as efficient electrocatalysts for hydrogen evolution reaction, *Chem. Sci.*, 2016, **7**, 3399.