Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting information

Double charge carrier mechanism through 2D/2D interface assisted ultrafast water reduction and antibiotic degradation over architecting S, P co-doped g-C₃N₄/ZnCr LDH photocatalyst

Dipti Prava Sahoo, Kundan Kumar Das, Sulagna Patnaik, Kulamani Parida*

Centre for Nano Science and Nano Technology, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar-751030

^{*}Corresponding Author: K.M. Parida

E-mail: kulamaniparida@soauniversity.ac.in & paridakulamani@yahoo.com Tel. No: +91-674-2351777; Fax: +91-674-2350642

Fig. S1 Zeta potentials of (a) LDH and (b) LSPCN10 samples.

Fig. S2 SEM images of (a) LDH, (b) SPCN (c) LSPCN10 material.

Fig. S3 EDX elemental analysis of LSPCN10 material.

Fig. S4 High resolution deconvoluted XPS spectra of SPCN: (a) C 1s, (b) N 1s, (c) P 2p and (d) S 2p.

Fig. S5 High resolution deconvoluted XPS spectra of LDH: (a) Zn 2p, (b) Cr 2p, (c) O 2p and (d) C 1s.

Fig. S6 LC-MS of CPX solution during degradation process over LSPCN10 heterostructure: (a) 0 min, (b) 60 min and (c) 90 min.

Fig. S7 TOC removal of photocatalytic CPX degradation over LSPCN10.

Fig. S8 (a) Molecular structure of CPX ($C_{17}H_{18}FN_3O_3$), (b) PZC plot of LSPCN10 heterostructure, photocatalytic degradation of CPX under (c) different pH, various (d) anions and (e) cations.

Fig. S9 Transient Photocurrent response analysis of CN, SPCN, LDH, LCN10 and LSPCN10 under discontinuous visible light irradiation.

Fig. S10 Mott-Schottky plot of (a) LDH and (b) SPCN at different frequencies.

Table S1 A comparison study for photocatalytic ciprofloxacin degradation over present heterostructure with the reported $g-C_3N_4$ and LDH based system.

Photocatalysts	Reaction condition (visible light source,	СРХ	Ref
	CPX concentration, catalyst dosage	degradation	
	and time period)	efficiency	
NiAl LDH/Fe ₃ O ₄ -	500 W Xe, (λ≥420),	91%	1
RGO	10 ppm CPX solution, (40 ml)		
	10 mg,		
	150 min		

NiAlFe LDH/RGO	500W Xe, (λ≥420),	92%	2
	10 ppm CPX solution (40 mL), 10 mg,		
	120 min		
SO ₄ ²⁻ -g-C ₃ N ₄ /Ag ₃ PO ₄	400W Xe, (λ≥420),	>90%	3
	20 ppm CPX solution (50mL), 20 mg,		
	50 min		
Ag@P-g-C ₃ N ₄ /BiVO ₄	300W Xe, (λ≥420), 10 ppm CPX	93 %	4
	solution (50mL), 25mg, 120 min		
C-dot@ nitrogen	300W Xe, (λ≥420), 10 ppm CPX	3.5 times	5
deficient g-C ₃ N ₄	solution (20mL), 20mg, 360 min	more than g-	
		C_3N_4	
g-C ₃ N ₄ -TiO ₂	300W Xe, (λ≥420), 10 ppm CPX	85%	6
	solution (80mL), 30mg, 180 min		
NiAg/ g-	Sun light, 20 ppm CPX solution	82%	7
$C_{3}N_{4}/Cd_{2}Sb_{2}O_{6.8}$	(50mL), 50mg,		
	70 min		
LSPCN10	250 wt medium pressure Hg ($\lambda \ge 420$	95%	
(Present research)	nm), 20 ppm CPX solution (20 mL),		
	20 mg, 90 min		

Table S2 A comparison study for photocatalytic H_2 evolution over present heterostructure with the reported g-C₃N₄ and LDH based system.

Photocatalyst	Visible light source and	H ₂ evolution	Ref
	sacrificial agents	(µmolg ⁻¹ h ⁻¹)	
CdSe/ZnCr LDH	450 W Xe (λ≥420),	1560	8
	Na ₂ SO ₄ /Na ₂ S /Pt		
CdZnS/ZnCr LDH	300 W Xe, (λ≥420),	18320	9
	CH ₃ OH		
g-C ₃ N ₄ /NiFe LDH	125 W Hg (λ≥420),	24800	10
	CH ₃ OH		

PCO/La Ti O /NiFe	100 mW AM 1.5	532	11
$ROO/La_2 \Pi_2 O_7/INITE$	100 III W AW 1.5,	552	
LDH	(λ≥420), TEOA		
ZnCr LDH/g-C ₃ N ₄	300 W Xe (λ≥420),	156	12
	TEOA		
1 wt% Pt/ NiS/P-S g-	125 W Hg (λ≥420),	1805	13
C ₃ N ₄	TEOA,		
$3 \text{ wt\% Pt/g-C}_3N_4/Ti_3C_2$	250 W Hg, (λ≥420),	72.3	14
	TEOA		
CoAl LDH/ g-C ₃ N ₄	300 W Xe, (λ≥420),	680	15
	TEOA		
Co(OH) ₂ /ZnCr LDH	125 W Hg, (λ≥420),	27875	16
	CH ₃ OH		
WO3-X/Ag/ZnCr LDH	150 W Xe (λ≥420),	29375	17
	CH ₃ OH		
LSPCN10	150 W Xe (λ≥420),	32975	
	CH ₃ OH		
(Present research)			

References

- J. Ni, J. Xue, L. F. Xie, J. Shen, G. He and H.Chen, Construction of magnetically separable NiAl LDH/Fe₃O₄-RGO nanocomposites with enhanced photocatalytic performance under visible light, *Phys. Chem. Chem. Phys.*, 2018, 20, 414-421.
- J. Liang, Y. Wei, Y. Yao, X. Zheng, J. Shen, G. He and H. Chen, Constructing highefficiency photocatalyst for degrading ciprofloxacin: Three-dimensional visible light driven graphene based NiAlFe LDH, *J Colloid Interf Sci.*, 2019, 540, 237-246.
- Z. Liu, J. Tian, C. Yu, Q. Fan, X. Liu, K. Yang, J. Zeng and H. Ji, Ultrasonic fabrication of SO₄^{2–} doped g-C₃N₄/Ag₃PO₄ composite applied for effective removal of dyestuffs and antibiotics, *Mater. Chem. Phys.*, 2020, **240**, 122206.
- Y. Deng, L. Tang, C. Feng, G. Zeng, J. Wang, Y. Zhou, Y. Liu, B. Peng and H. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C₃N₄ nanosheets/BiVO₄ photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation, *J. Hazard. Mater.*, 2018, **344**, 758-769.
- H. Zhang, , W. Wu, Y. Li, Y. Wang, C. Zhang, W. Zhang, L. Wang, and L. Niu, Enhanced photocatalytic degradation of ciprofloxacin using novel C-dot@ Nitrogen deficient g-C₃N₄: synergistic effect of nitrogen defects and C-dots. *Appl. Surf. Sci.*, 2019, 465, 450-458.
- Z. Yang, J. Yan, J. Lian, H. Xu, X. She and H. Li, g-C₃N₄/TiO₂ Nanocomposites for Degradation of Ciprofloxacin under Visible Light Irradiation, *Chemistry Select*, 2016, 1, 5679-5685.
- V. Jayaraman and A. Mani, Ag, Ni bimetallic supported g-C₃N₄ 2D/Cd₂Sb₂O_{6.8} pyrochlore interface photocatalyst for efficient removal of organic pollutants, *J. Mater. Sci-Mater. El.*, 2020, **31**, 11247-11267.
- G. Zhang, B. Lin, Y. Qiu, L. He, Y. Chen and B. Gao, Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets, *Int. J. Hydrogen Energ.*, 2015, 40, 4758-4765.
- L. Yao, D. Wei, D. Yan and C.Hu, ZnCr Layered Double Hydroxide (LDH) Nanosheets Assisted Formation of Hierarchical Flower-Like CdZnS@LDH Microstructures with Improved Visible-Light-Driven H₂ Production, *Chem. Asian J.*, 2015, **10**, 630–636.
- S. Nayak, L. Mohapatra and K. M. Parida, Visible light-driven novel g-C₃N₄/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction, *J. Mater. Chem. A*, 2015, **3**, 18622-18635.

- 11. R. Boppella, C. H. Choi, J. Moon and D. H. Kim, Spatial charge separation on strongly coupled 2D-hybrid of rGO/La₂Ti₂O₇/NiFe-LDH heterostructures for highly efficient noble metal free photocatalytic hydrogen generation, *Appl. Catal., B: Environ.*, 2018, 239, 178–186.
- J. M. Lee, J-H.Yang, N. H. Kwon, Y. K. Jo, J-H. Choy and S-J. Hwang, Intercalative Hybridization of Layered Double Hydroxide Nanocrystal with Mesoporous g-C₃N₄ for Enhancing Visible Light-Induced H₂ Production Efficiency, *Dalton Trans.*, 2018, 47, 2949-2955.
- L. Liu, X. Xu, Z. Si, Z. Wang and R. Ran, Y. He and D.Weng, Noble metal-free NiS/P-S codoped g-C₃N₄ photocatalysts with strong visible light absorbance and enhanced H₂ evolution activity, *Catal. Commun.*, 2018, **106**, 55-59.
- T. Su, Z. D. Hood, M. Naguib, L. Bai, S. Luo, C. M. Rouleau, I. N. Ivanov, H. Ji, Z. Qin and Z. Wu, 2D/2D heterojunction of Ti₃C₂/g-C₃N₄ nanosheets for enhanced photocatalytic hydrogen evolution, *Nanoscale*, 2019, **11**, 8138-8149.
- J. Zhang, Q. Zhu, L. Wang, M. Nasir, S. –H. Cho and J. Zhang, g-C₃N₄/CoAl-LDH 2D/2D hybrid heterojunction for boosting photocatalytic hydrogen evolution, *Int. J. Hydrogen Energ.*, 2020.
- 16. D. P. Sahoo, S. Nayak, K. H. Reddy, S. Martha and K. Parida, Fabrication of a Co(OH)₂/ZnCr LDH "p–n" heterojunction photocatalyst with enhanced separation of charge carriers for efficient visible-light-driven H₂ and O₂ evolution, *Inorg. chem.*, 2018, **57**, 3840-3854.
- D. P. Sahoo, S. Patnaik and K. Parida, Construction of a Z-Scheme Dictated WO_{3-X}/Ag/ZnCr LDH Synergistically Visible Light-Induced Photocatalyst towards Tetracycline Degradation and H₂ Evolution. *ACS Omega*, 2019, 4, 14721-14741.