-Electronic Supplementary Information-

Figure S1. XRD patterns of NF, Ni₃S₂, MoS₂-Ni₃S₂/NF, MoS₂-Ni₃S₂ (UR-2)/NF.

Figure S2. XPS survey spectra of MoS₂-Ni₃S₂ (UR-2)/NF.

Table S1. Comparison of HER activity of the $MoS_2-Ni_3S_2(UR-2)/NF$ with that of some

recently reported non-precious electrocatalysts in alkaline media.

Catalysta	<i>u</i> (mV)	<i>m</i> (mV)	Tafel Slope	Flootnolyto	Def	
Catalysis	η ₁₀ (mv)	η ₁₀₀ (ΠV)	(mV dec ⁻¹)	Liectrolyte	Kei.	
MoS ₂ -Ni ₃ S ₂ (UR-2)/NF	98	191	74.8	1.0 M KOH	This work	
Ni ₃ S ₂ particles	335		97	1.0 M KOH	1	
Laser-treated MoS ₂	271		74.5	1.0 M KOH	2	

Co-Ni ₃ S ₂ /NF	240	~370	144.99	1.0 M KOH	3
Ni ₃ S ₂ /Ni foam	123	260	110	1.0 M KOH	4
MoS_2/Ni_3S_2	110			1.0.1.1.0.11	_
heterostructures	110		83	1.0 M KOH	5
NiSe ₂ nanosheets	184		184	1.0 M KOH	6
V-Ni ₃ S ₂ -NW	68	350	112	1.0 M KOH	7
N dope Ni ₃ S ₂	155	~305	113	1.0 M KOH	8
Ni ₃ S ₂ NWs	199.2		106.1	1.0 M KOH	9
Co ₉ S ₈ Ni ₃ S ₂ HNTs/Ni	85	~235	83.1	1.0 M KOH	10
Ni ₃ S ₂ @MoS _x /NiO	118	~256	65	1.0 M KOH	11
Ni-Fe/nanocarbon	219		110	1.0 M KOH	12
Co/β-Mo ₂ C@N-CNTs	170		92	1.0 M KOH	13
O-CoMoS nanosheet	97	206	70	1.0 M KOH	14
G-Mo-Ni ₃ S ₂ -2/NF	68	~220	68	1.0 M KOH	15

Figure S3. Cyclic voltammograms of (a) $MoS_2-Ni_3S_2$ (UR-2)/NF and (c) $MoS_2-Ni_3S_2/NF$. Estimation of C_{dl} value (b) $MoS_2-Ni_3S_2$ (UR-2)/NF and (d) $MoS_2-Ni_3S_2/NF$.

The C_{dl} values of all catalysts can be calculated by the half of the slope of the capacitive current versus scan rate, which is by plotting the current density variation ($\Delta j = (j_a - j_c)/2$) at 0 mV vs RHE (j_a and j_c represent current density of anode and cathode, respectively.). Data obtained from the cyclic voltammogram in Figure S4 (a) and (c)).

Table S2. Calculated double layer capacitance (C_{dl}) and electrochemical active surface area (ECSA)

Catalysts	$C_{\rm dl}$ (mF cm ⁻²)	ECSA (cm ²)
MoS ₂ -Ni ₃ S ₂ /NF	151.6	3790
MoS ₂ -Ni ₃ S ₂ (UR-2)/NF	197.0	4925

Generally, the higher the double-layer capacitance (C_{dl}) value, the more active sites on the surface of the electrocatalyst. The C_{dl} value is directly proportional to the electrochemical active surface area (ECSA), which can provide a relative comparison for average active sites on the area of the surface of the electrocatalyst. The calculation equation is as follows:

$$ECSA = C_{dl} / 40 \ \mu F$$

The C_{dl} value is obtained through Figure S4 b and d. The capacitance of atomically smooth planar surface in 1.0 M KOH electrolyte ranges from 20 to 60 μ F cm⁻². For calculation, the area normalized specific capacitance was taken to be 40 μ F cm⁻².

Figure S4. HR-TEM images of MoS_2 -Ni₃S₂ (UR-2)/NF after OER test.

Table S3. Comparison of OER activity of the MoS_2 -Ni $_3S_2$ (UR-2)/NF with that of somerecently reported non-precious electrocatalysts in alkaline media.

Catalasta	··· (V)	Tafel Slope	Els série la és	D-f
Catalysts	η ₁₀₀ (mv)	(mV dec ⁻¹)	Electrolyte	Kei.
MoS ₂ -Ni ₃ S ₂ (UR-2)/NF	355	97.4	1.0 M KOH	This work
G-Mo-Ni ₃ S ₂ -2/NF	~415	69	1.0 M KOH	15
Mo-Ni-Se@NF	397	44.9	1.0 M KOH	16
$Co\text{-}MoS_{1+X}Se_{1+Y}1\text{-}5$	~450	71	1.0 M KOH	17
Zn-CoNiP/NF	~380	51	1.0 M KOH	18
NiCoP NWAs/NF	370	116	1.0 M KOH	19
CoS _x /Ni ₃ S ₂ @NF	~365	133	1.0 M KOH	20
Ni/Mo ₂ C(1:2)-NCNFs	432	78.4	1.0 M KOH	21
FCC-Ni-NiS/NS-rGO	~365	112	1.0 M KOH	22
Ni60Fe40-S/NSC	385	30.9	1.0 M KOH	23
Ni-S-P	~358	82	1.0 M KOH	24
NiS ₂ /NiSe ₂	~400	119	1.0 M KOH	25
Ni-BDC@NiS	~430	62	1.0 M KOH	26
S-CoO/Co ₃ O ₄	~360	92	1.0 M KOH	27
NiCo ₂ Se ₄	420	63	1.0 M KOH	28
NiFe-NiFe ₂ O ₄	~400	74	1.0 M KOH	29

Figure S5. SEM images of (a) $MoS_2-Ni_3S_2$ (UR-1)/NF, (b) $MoS_2-Ni_3S_2$ (UR-2)/NF, (c) $MoS_2-Ni_3S_2$ (UR-3)/NF.

Table S4. The main parameters for evaluating the electrochemical activity of HER

Catalysts	η ₁₀ (mV)	η ₁₀₀ (mV)	Tafel Slope (mV dec ⁻¹)	
$MoS_2-Ni_3S_2$ (UR-1)/NF	98	181	74.8	
MoS_2 - Ni_3S_2 (UR-2)/NF	124	205	81.5	
$MoS_2-Ni_3S_2$ (UR-2)/NF	132	224	84.3	

Table S5. The main parameters for evaluating the electrochemical activity of OER.

Catalysts	η ₁₀₀ (mV)	Tafel Slope (mV dec ⁻¹)	
MoS_2 - Ni_3S_2 (UR-1)/NF	355	97.4	
MoS_2 - Ni_3S_2 (UR-2)/NF	388	116.3	
$MoS_2-Ni_3S_2$ (UR-3)/NF	414	126.7	

Table S6. Comparison of overall water splitting performance of $MoS_2-Ni_3S_2$ (UR-2)/NF with that of some recently reported bifunctional electrocatalysts in alkaline media.

Catalysts	η ₁₀ (V)	Electrolyte	Ref.
MoS ₂ -Ni ₃ S ₂ (UR-2)/NF	1.56	1.0 M KOH	This work
Co ₉ S ₈ Ni ₃ S ₂ HNTs/Ni	1.59	1.0 M KOH	10
Co/β-Mo ₂ C@N-CNTs	1.64	1.0 M KOH	13
O-CoMoS nanosheet	1.60	1.0 M KOH	14
G-Mo-Ni ₃ S ₂ -2/NF	1.58	1.0 M KOH	15
$Co-MoS_{1+X}Se_{1+Y}1-5$	1.60	1.0 M KOH	17
CoS _x /Ni ₃ S ₂ @NF	1.572	1.0 M KOH	20
Ni/Mo ₂ C(1:2)-NCNFs	1.64	1.0 M KOH	21
Ni-S-P	1.58	1.0 M KOH	24
S-CoO/Co ₃ O ₄	1.60	1.0 M KOH	27
ANF@NW	1.71	1.0 M KOH	30
NiSe ₂ /3DSNG/NF	1.59	1.0 M KOH	31
CoS _x /NCS	1.83	1.0 M KOH	32
Cu-NiS ₂	1.64	1.0 M KOH	33
Ar-NiCo ₂ O ₄ S	1.63	1.0 M KOH	34
CoP NFs	1.65	1.0 M KOH	35

Figure S6. Stability tests at 10 mA cm⁻² of MoS_2 -Ni₃S₂ (UR-2)/NF, Pt/C on NF|RuO₂ on NF and MoS_2 -Ni₃S₂/NF for overall water splitting in an alkaline media (1.0 M KOH).

Figure S7. (a) Jing Lake (b) endurance tests at 10 mA cm⁻² of MoS₂-Ni₃S₂ (UR-2)/NF

for overall water splitting in grey water.

Figure S8. Photographs of (a) NF, (b) MoS₂-Ni₃S₂/NF and (c) MoS₂-Ni₃S₂(UR-2)/NF.

Table S7.	. The main	parameters	for test	and data	analysis	of the XRD
-----------	------------	------------	----------	----------	----------	------------

Main parameters	Parameter settings
Instrument type	Siemens D5005 diffractometer
Source, photon energy	Cu-K α , λ = 1.5418 Å, 40 kV and 30 mA
Scanning rate	5 ° min ⁻¹

Geometry	θ-θ
Measurement form	Bragg measurement
Type of detector	Array detector
Form of the sample	Self-supporting bulk material
Sample testing software	Smartlab guidance
Data analysis software	Jade6
Drawing software	Origin 2018

Table S8. The main parameters for test and data analysis of the XPS

Main parameters	Parameter settings
Instrument type	ESCALAB 250 spectrometer
Source, photon energy	Al Kα,1486.6 eV
Beam spot size	500 μm
Scan mode	CAE
Whether it is a monochromatic source	monochromatic
Sample testing software	Avantage
Resolution	0.5 eV
Form of the sample	Self-supporting bulk material
Data analysis software	XPS peak 4.1
Background type of XPS peak 4.1	Linear
%Lorentzian-Gaussian of XPS peak 4.1	80%

REFERENCES

- 1. J. Li, P. Xu, R. Zhou, R. Li, L. Qiu, S. P. Jiang and D. Yuan, Co₉S₈–Ni₃S₂ heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting, *Electrochim. Acta*, 2019, **299**, 152-162.
- N. Jiang, Q. Tang, M. Sheng, B. You, D.-e. Jiang and Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS₂, and Ni₃S₂ nanoparticles, *Catal. Sci. Technol.*, 2016, 6, 1077-1084.
- 3. Z. Lin, Z. Wang, S. Shen, Y. Chen, Z. Du, W. Tao, A. Xu, X. Ye, W. Zhong and S. Feng, One-step method to achieve multiple decorations on lamellar MoS₂ to synergistically enhance the electrocatalytic HER performance, *J. Alloys Compd.*, 2020, **834**, 155217.
- S. Song, Y. Wang, W. Li, P. Tian, S. Zhou, H. Gao, X. Tian and J. Zang, Codoped Ni₃S₂ hierarchical nanoarrays derived from zeolitic imidazolate frameworks as bifunctional electrocatalysts for highly enhanced overall-watersplitting activity, *J. Alloys Compd.* 2020, 827, 154299.
- 5. C. Tang, Z. Pu, Q. Liu, A. M. Asiri, Y. Luo and X. Sun, Ni₃S₂ nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions, *Int. J. Hydrogen Energy*, 2015, **40**, 4727-4732.
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, Interface engineering of MoS₂/Ni₃S₂ heterostructures for highly enhanced electrochemical overall-water-splitting activity, *Angew. Chem., Int. Ed.*, 2016, 55, 6702-6707.
- H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang and S. Jin, Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting, *Chem. Mater.*, 2015, 27, 5702-5711.
- Y. Qu, M. Yang, J. Chai, Z. Tang, M. Shao, C. T. Kwok, M. Yang, Z. Wang, D. Chua, S. Wang, Z. Lu and H. Pan, Facile synthesis of vanadium-doped Ni₃S₂ nanowire arrays as active electrocatalyst for hydrogen evolution reaction, *ACS Appl. Mater. Interfaces*, 2017, 9, 5959-5967.
- 9. T. Kou, T. Smart, B. Yao, I. Chen, D. Thota, Y. Ping and Y. Li, Theoretical and experimental insight into the effect of nitrogen doping on hydrogen evolution activity of Ni₃S₂ in alkaline medium, *Adv. Energy Mater.*, 2018, **8**, 1703538.
- 10. J. Li, P. K. Shen and Z. Tian, One-step synthesis of Ni_3S_2 nanowires at low temperature as efficient electrocatalyst for hydrogen evolution reaction, *Int. J.*

Hydrogen Energy, 2017, 42, 7136-7142.

- K. J. H. Lim, G. Yilmaz, Y.-F. Lim and G. W. Ho, Multi-compositional hierarchical nanostructured Ni₃S₂@MoS_x/NiO electrodes for enhanced electrocatalytic hydrogen generation and energy storage, *J. Mater. Chem. A*, 2018, 6, 20491-20499.
- 12. X. Zhang, H. Xu, X. Li, Y. Li, T. Yang and Y. Liang, Facile synthesis of nickeliron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting, *ACS Catal.*, 2015, **6**, 580-588.
- T. Ouyang, Y. Q. Ye, C. Y. Wu, K. Xiao and Z. Q. Liu, Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and beta-Mo₂C nanoparticles as bifunctional electrodes for water splitting, *Angew. Chem., Int. Ed.*, 2019, **58**, 4923-4928.
- J. Hou, B. Zhang, Z. Li, S. Cao, Y. Sun, Y. Wu, Z. Gao and L. Sun, Vertically aligned oxygenated-CoS₂–MoS₂ heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting, *ACS Catal.*, 2018, 8, 4612-4621.
- 15. J. Li, X. Zhang, Z. Zhang, Z. Li, M. Gao, H. Wei and H. Chu, Graphenequantum-dots-induced facile growth of porous molybdenum doped Ni₃S₂ nanoflakes as efficient bifunctional electrocatalyst for overall water splitting, *Electrochim. Acta*, 2019, **304**, 487-494.
- H. Yang, Y. Huang, W. Y. Teoh, L. Jiang, W. Chen, L. Zhang and J. Yan, Molybdenum selenide nanosheets surrounding nickel selenides submicroislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting, *Electrochim. Acta*, 2020, **349**, 136336.
- 17. Q. Zhou, X. Luo, Z. Liu, S. Li, Y. Nan, H. Deng, Y. Ma and W. Xu, Co-doped 1T'/T phase dominated MoS_{1+X}Se_{1+Y} alloy nanosheets as bifunctional electrocatalyst for overall water splitting, *Appl. Surf. Sci.*, 2020, **513**, 145828.
- X. Wang, Y. Xie, W. Zhou, X. Wang, Z. Cai, Z. Xing, M. Li and K. Pan, The self-supported Zn-doped CoNiP microsphere/thorn hierarchical structures as efficient bifunctional catalysts for water splitting, *Electrochim. Acta*, 2020, **339**, 135933.
- 19. J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I. V. Zatovsky and W. Han, Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting, *J. Mater. Chem. A*, 2017, **5**, 14828-14837.
- 20. S. Shit, S. Chhetri, W. Jang, N. C. Murmu, H. Koo, P. Samanta and T. Kuila, Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application, *ACS Appl. Mater. Interfaces*, 2018, **10**, 27712-27722.
- M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna and X. Lu, Ni strongly coupled with Mo₂C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting, *Adv. Energy Mater.*, 2019, 9, 1803185.
- 22. M. B. Zakaria, Y. Guo, J. Na, R. Tahawy, T. Chikyow, W. A. El-Said, D. A. El-Hady, W. Alshitari, Y. Yamauchi and J. Lin, Layer-by-layer motif

heteroarchitecturing of N,S-Codoped reduced graphene oxide-wrapped Ni/NiS nanoparticles for the electrochemical oxidation of water, *ChemSusChem*, 2020, **13**, 3269-3276.

- 23. X. He, X. Zhao, F. Yin, B. Chen, G. Li and H. Yin, NiS-FeS/N, S co-doped carbon hybrid: synergistic effect between NiS and FeS facilitating electrochemical oxygen evolution reaction, *Int. J. Energy Res.*, 2020, **44**, 7057-7067.
- 24. Q. Xu, W. Gao, M. Wang, G. Yuan, X. Ren, R. Zhao, S. Zhao and Q. Wang, Electrodeposition of NiS/Ni₂P nanoparticles embedded in amorphous Ni(OH)₂ nanosheets as an efficient and durable dual-functional electrocatalyst for overall water splitting, *Int. J. Hydrogen Energy*, 2020, 45, 2546-2556.
- 25. Y. Yang, Y. Kang, H. Zhao, X. Dai, M. Cui, X. Luan, X. Zhang, F. Nie, Z. Ren and W. Song, An interfacial electron transfer on tetrahedral NiS₂/NiSe₂ heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction, *Small*, 2020, **16**, 1905083.
- 26. P. He, Y. Xie, Y. Dou, J. Zhou, A. Zhou, X. Wei and J. R. Li, Partial sulfurization of a 2D MOF array for highly efficient oxygen evolution reaction, *ACS Appl. Mater. Interfaces*, 2019, **11**, 41595-41601.
- T. Sun, P. Liu, Y. Zhang, Z. Chen, C. Zhang, X. Guo, C. Ma, Y. Gao and S. Zhang, Boosting the electrochemical water splitting on Co₃O₄ through surface decoration of epitaxial S-doped CoO layers, *Chem. Eng. J.*, 2020, **390**, 124591.
- 28. S. M. N. Jeghan and G. Lee, One-dimensional hierarchical nanostructures of NiCo₂O₄, NiCo₂S₄ and NiCo₂Se₄ with superior electrocatalytic activities toward efficient oxygen evolution reaction, *Nanotechnology*, 2020, **31**, 295405.
- R. A. Raimundo, V. D. Silva, E. S. Medeiros, D. A. Macedo, T. A. Simões, U. U. Gomes, M. A. Morales and R. M. Gomes, Multifunctional solution blow spun NiFe–NiFe₂O₄ composite nanofibers: structure, magnetic properties and OER activity, *J. Phys. Chem. Solids*, 2020, **139**, 109325.
- 30. H. Sun, Z. Ma, Y. Qiu, H. Liu and G. G. Gao, Ni@NiO nanowires on nickel foam prepared via "acid hungry" strategy: high supercapacitor performance and robust electrocatalysts for water splitting reaction, *Small*, 2018, **14**, 1800294.
- 31. J. Zhou, Z. Wang, D. Yang, F. Qi, X. Hao, W. Zhang and Y. Chen, NiSe₂anchored N, S-doped graphene/Ni foam as a free-standing bifunctional electrocatalyst for efficient water splitting, *Nanoscale*, 2020, **12**, 9866-9872.
- Q. Ju, R. Ma, Y. Pei, B. Guo, Q. Liu, T. Zhang, M. Yang and J. Wang, Nitrogendoped carbon spheres decorated with CoS_x nanoparticles as multifunctional electrocatalysts for rechargeable zn-air battery and overall water splitting, *Mater. Res. Bull.*, 2020, **125**, 110770.
- K. N. Dinh, Y. Sun, Z. Pei, Z. Yuan, A. Suwardi, Q. Huang, X. Liao, Z. Wang, Y. Chen and Q. Yan, Electronic modulation of nickel disulfide toward efficient water electrolysis, *Small*, 2020, 16, 1905885.
- 34. J. H. Lin, Y. T. Yan, T. X. Xu, C. Q. Qu, J. Li, J. Cao, J. C. Feng and J. L. Qi, S doped NiCo₂O₄ nanosheet arrays by Ar plasma: an efficient and bifunctional electrode for overall water splitting, *J. Colloid Interface Sci.*, 2020, 560, 34-39.

35. L. Ji, J. Wang, X. Teng, T. J. Meyer and Z. Chen, CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting, *ACS Catal.*, 2019, **10**, 412-419.