Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Electronic Supplementary Information

Activating Co nanoparticles on graphitic carbon nitride *via* tuning the Schottky barrier by P doping for the efficient dehydrogenation of ammonia-borane

Shao-Hong Xu, ^a Jing-Feng Wang, *^{b,c} Alexsandra Valério, ^d Wen-Yu Zhang, ^a Jia-Lun Sun, ^a and Dan-Nong He *^{a,b}

^a School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai 200240, P. R. China. E-mail:

^b National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Min Hang District, Shanghai 200241, P.R. China. E-mail:

^c Shanghai University of Medicine & Health Sciences, 279 Zhouzhu highway, Shanghai, 201318, P. R. China.

^d Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.

Corresponding author e-mail address: hdn_nercn@163.com; jfwang@shu.edu.cn.

Table of content

Fig. S1 EDS elemental mapping images of P_0CN .	3	
Fig. S2 EDS elemental mapping images of $P_{3.59}CN$.		
Fig. S3 Photographs of P_0CN , $P_{2.16}CN$, $P_{3.59}CN$, $P_{5.26}CN$, and $P_{8.49}CN$.		
Fig. S4 Typical TEM (a) and HRTEM (b) images of Co/P _{3.59} CN.		
Fig. S5 XRD pattern of $Co/P_{3.59}CN$.		
Fig. S6 Co2p deconvoluted XPS spectra of Co/ $P_{3.59}$ CN before (a) and after (b) etching treatment. 8		
Fig. S7 Typical TEM (a-b) images of $Co/P_{3.59}CN$ catalysts after eight cycles and XRD patterns(c)		
of fresh and used Co/P _{3.59} CN catalysts.	9	
Fig. S8 UV/Vis diffuse reflection spectra of $P_{3.59}CN$ and $Co/P_{3.59}CN$.		
Fig. S9 Photographs of $P_{3.59}CN$ and $Co/P_{3.59}CN$.		
Table S1 The P atomic percentage of P ₀ CN, P _{2.16} CN, P _{3.59} CN, P _{5.26} CN, and P _{8.49} CN.	12	

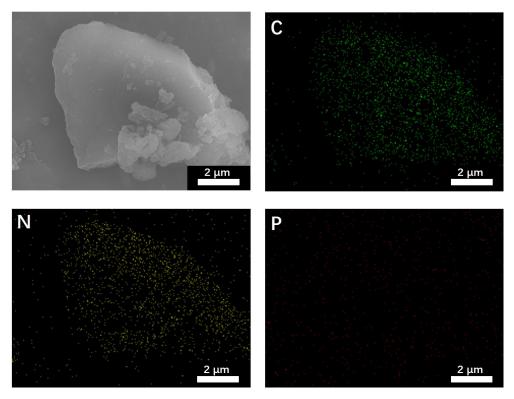


Fig. S1 EDS elemental mapping images of P_0CN .

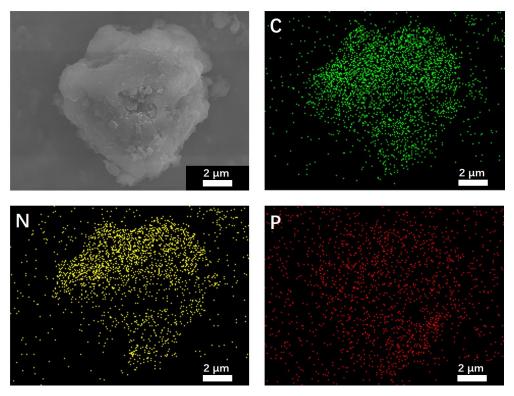


Fig. S2 EDS elemental mapping images of $P_{3.59}CN$.

Fig. S3 Photographs of P_0CN , $P_{2.16}CN$, $P_{3.59}CN$, $P_{5.26}CN$, and $P_{8.49}CN$. It is shown a significant color change from pale yellow to black for the samples.

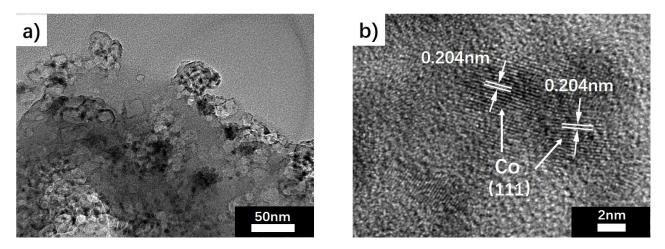


Fig. S4 Typical TEM (a) and HRTEM (b) images of $Co/P_{3.59}CN$. The interlayer space of 0.204 nm in $Co/P_{3.59}CN$ is ascribed to the (111) lattice plane of metallic cobalt nanocrystal.

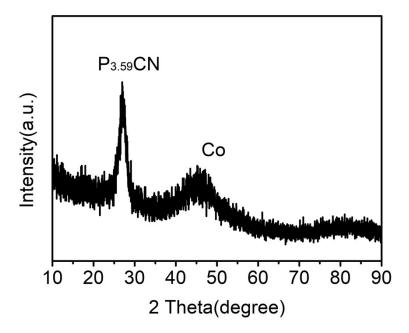


Fig. S5 XRD pattern of Co/P_{3,59}CN. When Co NPs are introduced into P_{3,59}CN, a weak and broad peak located at 44.2° is observed, indicating the formation of metallic Co NPs. The diffraction peak located at 27.3° which corresponds to P_{3,59}CN exhibits no obvious change after the loading of Co NPs.

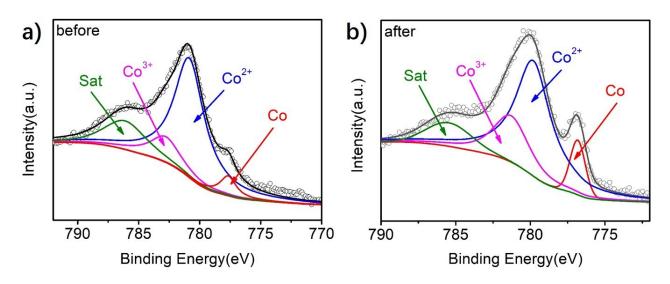


Fig. S6 Co2p deconvoluted XPS spectra of Co/ $P_{3.59}$ CN before (a) and after (b) etching treatment.The peak of metallic Co is obviously enhanced after etching, indicating that metallic Co NPs areexistedundertheoxidationlayer.

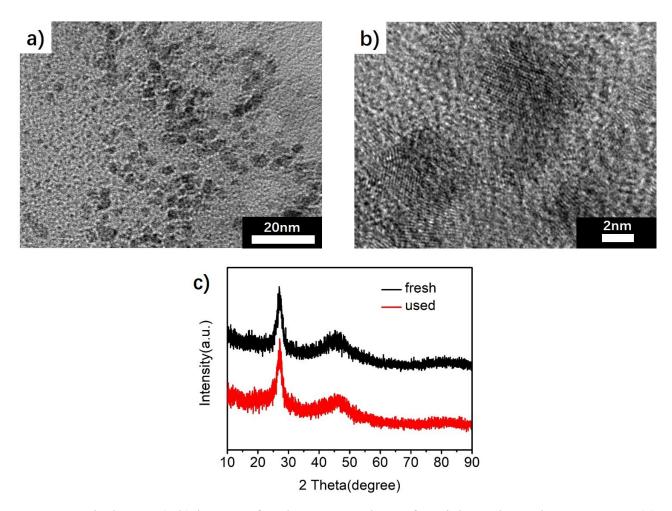


Fig. S7 Typical TEM (a-b) images of $Co/P_{3.59}CN$ catalysts after eight cycles and XRD patterns(c) of fresh and used $Co/P_{3.59}CN$ catalysts. No obvious change was found in the $Co/P_{3.59}CN$ catalysts after eight cycles, indicating the good stability of $Co/P_{3.59}CN$.

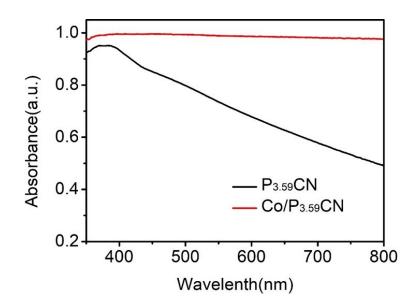


Fig. S8 UV/Vis diffuse reflection spectra of $P_{3.59}CN$ and $Co/P_{3.59}CN$.

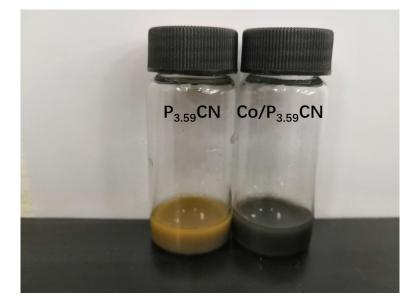


Fig. S9 Photographs of $P_{3.59}CN$ and $Co/P_{3.59}CN$.

Samples	HEDP amount (g)	P (%)
P ₀ CN	0	0
P _{2.16} CN	0.2	2.16
P _{3.59} CN	0.4	3.59
P _{5.26} CN	0.6	5.26
P _{8.49} CN	0.8	8.49

Table S1 The P atomic percentage of P_0CN , $P_{2.16}CN$, $P_{3.59}CN$, $P_{5.26}CN$, and $P_{8.49}CN$.