Electronic Supplementary Information (ESI) for

Metal carbide/Ni hybrids for high-performance electromagnetic absorption and absorption-based electromagnetic interference shielding

Qindong Xie,[†] Zhiyang Yan,[‡] Feng Qin, *[‡] Le Wang,[†] Lin Mei,[†] Yanpei Zhang,[†] Zhongke Wang,[†] Guangtao Zhao,[†] and Ruibin Jiang *[†]

[†]Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for

Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi

Normal University, Xi'an 710119, China

[‡]Key Laboratory of Science and Technology on Complex Electromagnetic Environment,

China Academy of Engineering Physics, Mianyang 621900, China

Contents

1. Experimental Details	S3
1.1. Materials	S3
1.2. Preparation of Ti ₃ C ₂ T _x MXene	S3
1.3. Preparation of Ti ₃ C ₂ T _x /Ni Hybrid Nanostructures	S3
1.4. Fabrication of Free-Standing Ti ₃ C ₂ T _x /Ni Film	S4
1.5. Characterization	S4
1.6. Electromagnetic Absorption and Electromagnetic Interference Shielding Measurer	nents S5
2. Supporting Figures and Tables	S6
Figure S1. a) Large magnification TEM image of $Ti_3C_2T_x$ nanosheet. b) HRTEM taken nanoparticle on $Ti_3C_2T_x$ nanosheet	1 on a S6
Figure S2. Thickness distribution of MXene nanosheets	S6
Figure S3. FTIR spectra of Ti ₃ C ₂ T _x MXene and Ti ₃ C ₂ T _x MXene/Ni-5	S6
Figure S4. a) Electrical conductivity of Ti ₃ C ₂ T _x MXene and Ti ₃ C ₂ T _x MXene/Ni hybrid nanostructure with different Ni loading. b) Conductance loss of different samples	S7
Figure S5. Cole-Cole figure of different samples	S7
Figure S6. Values of $\mu''(\mu')$ -2f-1 for the composites vs. frequency	S7
Figure S7. Reflection loss at different thicknesses. a) Ti ₃ C ₂ T _x MXene. b–d) Ti ₃ C ₂ T _x MXene/Ni-1, MXene/Ni-5, and MXene/Ni-10, respectively	S8
Figure S8. Film of Ti ₃ C ₂ T _x MXene/Ni-5. a) Photograph of the film on filter paper. b,c) Photograph of the film lifted off the filter paper.	S9
Figure S9. Tensile stress-strain curves of Ti ₃ C ₂ T _x MXene and Ti ₃ C ₂ T _x MXene/Ni hybr nanostructure with different amounts of Ni loading	id S9
Table S1. Relationship between shielding effectiveness (dB) and shielding efficiency (%) S10
Table S2. EMI shielding materials of various materials	S10
References	S11

1. Experimental Details

1.1. Materials

Lithium fluoride (LiF, 98.5%, Aladdin), hydrochloric acid (HCl, 36-38%, Sinopharm Chemical Reagent Co., Ltd.), hydrazine monohydrate (N₂H₄·H₂O, 50%, Aladdin), polyvinyl pyrrolidone (PVP, MW ~29000, Aladdin), Ti₃AlC₂ Max phase (400 mesh, <30.8 µm, Laizhou Kai Kai Ceramic Materials Co., Ltd.), nickel chloride hexahydrate (NiCl₂·6H₂O, 98%, Aladdin), ammonia solution (NH₃·H₂O, 25%~28%, Sinopharm Chemical Reagent Co., Ltd.), durapore filter membrane (polyvinyldifluoride (PVDF), pore size 0.1 µm). All chemical reagents were used directly from commercial suppliers without further processing.

1.2. Preparation of $Ti_3C_2T_x$ MXene

Ti₃C₂T_x was synthesized by etching Ti₃AlC₂ phase (<30.8 μ m) with LiF/HCl.^[1] Specifically, LiF (1 g) and HCl (20 mL, 9 M) were first mixed by stirring in a Teflon vessel. Ti₃AlC₂ powder (1 g) was then slowly added into the mixture. The obtained dispersion was kept stirring for 24 h at 35 °C. After the reaction, the resultant was collected by centrifugation at 3500 rpm for 5 min and washed repeatedly with deionized water. Finally, the homogeneous delaminated Ti₃C₂T_x supernatant was obtained by sonication for 1 h under Ar flow, followed by centrifugation at 3500 rpm for 1 h. The resulting supernatant has Ti₃C₂T_x concentration of 2 mg/mL.

1.3. Preparation of Ti₃C₂T_x/Ni Hybrid Nanostructures

The Ti₃C₂T_x/Ni hybrid nanostructures were prepared through two steps. In the first step, Ti₃C₂T_x adsorbed Ni²⁺ was obtained. Specifically, different amounts of aqueous NiCl₂·6H₂O solution (10 mg/mL) were added into 91.7 mL of Ti₃C₂T_x (2 mg/mL), followed by the addition of PVP. To obtain Ni contents of 1 wt.%, 5 wt.%, and 10 wt.% in the precursors, the addition amounts of NiCl₂·6H₂O solution were 0.83 mL, 4.15 mL, and 8.3 mL, respectively,

and the corresponding PVP amounts were 10 mg, 30 mg, and 50 mg, respectively. After the addition of NiCl₂·6H₂O solution and PVP, deionized water was added to adjust the total volume of Ti₃C₂T_x-Ni²⁺ mixed solutions to 100 mL. The resultant mixture was then stirred at room temperature for 24 h to adsorb Ni²⁺ sufficiently. In the second step, the mixed solution was first heated to 60 °C. Hydrazine monohydrate (N₂H₄·H₂O) was then introduced as the reducing agent. After 5 min, 0.5 mL of NH₃·H₂O was added. The mixture solution was kept at 60 °C for 5 hours to produce Ti₃C₂T_x/Ni hybrid nanostructures. The samples with Ni contents of 1 wt.%, 5 wt.%, and 10 wt.% were named as Ti₃C₂T_x/Ni-1, Ti₃C₂T_x/Ni-5, and Ti₃C₂T_x/Ni-10, respectively.

1.4. Fabrication of Free-Standing Ti₃C₂T_x/Ni Film

 $Ti_3C_2T_x$ and $Ti_3C_2T_x/Ni$ films were fabricated through vacuum-assisted filtration with Durapore filter membrane (PVDF, pore size 0.1 µm). Specifically, different amounts of sample dispersions (5 mg/mL) were filtered until dry for 24–72 h at room temperature to fabricate films with different thickness. Free-standing films were obtained through peeling the film off the filter membrane after the films were dried at room temperature. To study the absorption of different samples toward electromagnetic waves, paraffin-based composites were prepared with different Ti₃C₂T_x/Ni hybrid nanostructures.

1.5. Characterization

The morphologies of samples were characterized by SEM (SU8220, Hitachi, 5 kV), TEM (JEM-2100, JEOL, 200 kV) and AFM (Dimension Icon Bruker). HRTEM imaging was carried out on a JEOL JEM-2100 operating at 200 kV. EDX elemental maps were obtained on an FEI Tecnai F20 microscope equipped with an Oxford EDX analysis system. XRD patterns were conducted on a Rigaku Smartlab (XRD; Rigaku, Miniflex600) diffractometer with Cu K α ($\lambda = 1.5406$ Å) radiation. The chemical bonding information was obtained with X-ray

photoelectron spectra (XPS) (Axis Ultra, Kratos Analytical Ltd, Japan) equipped with a monochromatized Al K α X-ray source (1486.6 eV). The binding energy was corrected by the C 1s line at 284.6 eV. Fourier transform infrared spectroscopy (FTIR) were recorded in the range of 400–4000 cm⁻¹ using a semiconductor parameter analyzer (spectrum two, PerkinElmer, USA). The conductivity of the prepared composites was measured by a four-point probe instrument (RTS-9, Guangzhou, China). EDX for identifying the element contents was carried out on SEM (SU8020, Hitachi, 15 kV) with Horiba EDX Spectrometer.

1.6. Electromagnetic Absorption and Electromagnetic Interference Shielding Measurements

Paraffin-based composites containing different nanostructures were pressed into a toroidal shape with an inner diameter of 3.00 mm and an outer diameter of 7.00 mm. The dielectric constant and magnetic permeability were measured using two-port vector network analyzer (Rohde & Schwarz ZVB 20, Germany) over the frequency of 2–18 GHz.

Electromagnetic interference shielding of samples was measured using waveguide method by a vector network analyzer (VNA) (Agilent, E8363B, USA) in the X-band. The samples for the S-parameter measurements have diameters of 45 mm. The reflection coefficient *R*, transmission coefficient *T*, and absorption coefficient *A* were determined from S parameters as follows: $T = |S_{12}|^2 = |S_{12}|^2$, $R = |S_{11}|^2 = |S_{22}|^2$, and A = 1 - R - T, where S_{11} , S_{22} , S_{12} , and S_{21} are input reflection, output reflection, reverse transmission, and forward transmission, respectively.

2. Supporting Figures and Tables

Figure S1. a) Large magnification TEM image of $Ti_3C_2T_x$ nanosheet. b) HRTEM taken on a nanoparticle on $Ti_3C_2T_x$ nanosheet. The lattice fringes indicate that the nanoparticle is $Ti_3C_2T_x$.

Figure S2. Thickness distribution of MXene nanosheets. It can be found that most of MXene nanosheets have thickness in the range of 1.5–2 nm. The thicknesses are obtained from AFM image.

Figure S3. FTIR spectra of $Ti_3C_2T_x$ MXene and $Ti_3C_2T_x$ MXene/Ni-5.

Figure S4. a) Electrical conductivity of $Ti_3C_2T_x$ MXene and $Ti_3C_2T_x$ MXene/Ni hybrid nanostructure with different Ni loading. b) Conductance loss of different samples.

Figure S5. Cole-Cole figure of different samples.

Figure S6. Values of $\mu''(\mu')^{-2}f^{-1}$ for the composites vs. frequency. a) Values of $\mu''(\mu')^{-2}f^{-1}$ in the frequency range of 2–18 GHz. b) Enlarged plots in the frequency range of 8–18 GHz.

Figure S7. Reflection loss at different thicknesses. a) $Ti_3C_2T_x$ MXene. b–d) $Ti_3C_2T_x$ MXene/Ni-1, MXene/Ni-5, and MXene/Ni-10, respectively. The gray dashed lines indicate the RL value of -10 dB.

Figure S8. Film of $Ti_3C_2T_x$ MXene/Ni-5. a) Photograph of the film on filter paper. b,c) Photograph of the film lifted off the filter paper. It can be found that the film is relatively flexible. d) SEM image of the cross section of the film.

Figure S9. Tensile stress-strain curves of $Ti_3C_2T_x$ MXene and $Ti_3C_2T_x$ MXene/Ni hybrid nanostructure with different amounts of Ni loading. The strain rate is 1.5 mm/min. The film thicknesses are 50 μ m.

0 10 20 30	(70)
10 20 30	0
20 30	90
30	99
	99.9
40	99.99
50	99.999
60	99.9999
62	99.99994

Table S1. Relationship between shielding effectiveness (dB) and shielding efficiency (%).

Table S2. EMI shielding materials of various materials

Materials type	Filler	Filler (wt.%)	Matrix	Thickness (mm)	EMI SE (dB)	Ref.
MXene film	$Ti_3C_2T_X$	87.5	Pedot:PSS	0.0111	42.1	2
	$Ti_3C_2T_X$	90	CNF	0.047	22	3
	$Ti_3C_2T_X$	/	textile	0.43	41	4
	$Ti_3C_2T_X$	90	SA	0.008	57	5
	Ti ₂ CT _X	30	wax	0.8	70	6
	$Ti_3C_2T_X$	1.9 vol.%	PS	2.0	62	7
	MWCNT/Ti ₃ C ₂ T _X	/	PVA&PSS	0.00017	2.8	8
	SWCNT/Ti ₃ C ₂ T _X	/	PVA&PSS	0.000207	3.34	8
	$Ti_3C_2T_X$	/	/	0.06	71	9
MXene foam	$Ti_3C_2T_X$	90	CA	0.026	54.3	10
	Ti_2CT_X	7.6 vol.%	PVA	0.1	47.7	11
Metal film	Со	60	PVDF/CNT	0.3	35.3	12
	$\mathrm{TiN}_{\mathrm{X}}$	/	/	0.00147	>20	13
	Ni	20	PVDF	0.3	27.6	14
	Ag	7.75	PLA	2.7	60.4	15
	Ni-CF	/	PC	0.31	72.7	16
	Ag	5.46	PU	0.36	106	17
	Ag/ZnO	5.7 vol%	WPU	0.5	87.2	18
	Ni/GMP	30	wax	0.7	40	19
Carbon film	rGO	7	PS	2.5	45.1	20
	rGO	/	/	0.014	73.7	22

	graphene	/	/	0.01	25	23
	LG paper	/	/	0.0125	52.5	24
	MWCNT	80	PU	2.3	46.7	25
	graphene	2 vol.%	B_4C	1.5	35	26
	CNT	5	PVDF	0.1	22.41	27
	CNT	8	PVDF	0.1	25.02	27
	CNT/graphene	5/10	PVDF	0.1	27.58	27
	rGO	/	TiO ₂ /SiO ₂ /PPy	0.244	30	28
	graphene	3.07	PDMS	2.0	54	29
	GO/CNT	15	SiCN	2.0	67.2	30
	G/GNT	/	UHMWPE	0.5	31.8	31
Carbon film	graphene	/	/	2.0	48.7	32
	rGo	0.66	epoxy	2.0	33	21
	MWCNT	0.5	epoxy/rubber	2.0	22.9	33
	Ag@C	/	/	3.0	70.1	34
MXene film	Ni	5	Ti ₃ C ₂ T _X	0.002	22	
	Ni	5	$Ti_3C_2T_X$	0.005	32.6	
	Ni	5	$Ti_3C_2T_X$	0.01	41.05	This
	Ni	5	$Ti_3C_2T_X$	0.018	48.6	work
	Ni	5	$Ti_3C_2T_X$	0.03	52.4	
	Ni	5	$Ti_3C_2T_X$	0.05	62.7	

References:

- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, *Chem. Mater.* 2017, 29, 7633.
- [2] R. T. Liu, M. Miao, Y. H. Li, J. F. Zhang, S. M. Cao, X. Feng, ACS Appl. Mater. Interfaces 2018, 10, 44787.
- [3] W. T. Cao, F. F. Chen, Y. J. Zhu, Y. G. Zhang, Y. Y. Jiang, M. G. Ma, F. Chen, ACS Nano 2018, 12, 4583.
- [4] Q. W. Wang, H. B. Zhang, J. Liu, S. Zhao, X. Xie, L. X. Liu, R. Yang, N. Koratkar, Z. Z. Yu, Adv. Funct. Mater. 2019, 29, 1806819.
- [5] F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, Y. Gogotsi, *Science* **2016**, *353*, 1137.
- [6] X. Li, X. Yin, S. Liang, M. Li, L. Cheng, L. Zhang, Carbon 2019,146, 210.
- [7] R. Sun, H. B. Zhang, J. Liu, X. Xie, R. Yang, Y. Li, S. Hong, Z. Z. Yu, Adv. Funct. Mater. 2017, 27, 1702807.
- [8] G. M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang, J. Lipton, K. Maleski, J. Kong, E. Shaulsky, M. Elimelech, Y. Gogotsi, A. D. Taylor, *Adv. Funct. Mater.* 2018, 28, 1803360.
- [9] J. Liu, H. B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z. Z. Yu, Adv. Mater. 2017, 29, 1702367.
- [10] Z. Zhou, J. Liu, X. Zhang, D. Tian, Z. Zhan, C. Lu, Adv. Mater. Interfaces 2019, 1802040.

- [11] H. Xu, X. Yin, X. Li, M. Li, S. Liang, L. Zhang, L. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 10198.
- [12] X. Li, S. Zeng, S. E, L. Liang, Z. Bai, Y. Zhou, B. Zhao, R. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 40789.
- [13] L. Lu, F. Luo, Y. Qing, W. Zhou, D. Zhu, J. Dong, Appl. Phys. A 2018, 124, 721.
- [14]B. Zhao, S. Zeng, X. Li, X. Guo, Z. Bai, B. Fan. R, Zhang, J. Mater. Chem. C, 2020, 8, 500.
- [15] X. Huang, B. Dai, Y. Ren, J. Xu, P. Zhu, J. Nanomater. 2015, 2015, 320306.
- [16] D. Xing, L. Lu, K. S. Teh, Z. Wan, Y. Xie, Y. Tang, Carbon 2018, 132, 32.
- [17]L. C. Jia, L. Xu, F. Ren, P. G. Ren, D. X. Yan, Z. M. Li, Carbon 2019, 144, 101.
- [18] Y. Xu, Y. Yang, D. X. Yan, H. Duan, G. Zhao, Y. Liu, ACS Appl. Mater. Interfaces 2018, 10, 19143.
- [19]H. J. Im, G. H. Jun, D. J. Lee, H. J. Ryu, S. H. Hong, J. Mater. Chem. C 2017, 5, 6471.
- [20] D. X, Yan, H, Pang, B. Li, R. Vajtai, L. Xu, P. G. Ren, J. H. Wang, Z. M. Li, Adv. Funct. Mater. 2015, 25, 559.
- [21] Y. Chen, H. B. Zhang, Y. Yang, M. Wang, A. Cao, Z. Z. Yu, Adv. Funct. Mater. 2016, 26, 447.
- [22] S. Lin, S. Ju, J. Zhang, G. Shi, Y. He, D. Jiang, RSC Adv. 2019, 9, 1419.
- [23] S. Wana, Y. Lia, J. Muc, A. E. Alievc, S. Fang, N. A. Kotovb, L. Jiang, Q. Chenga, R. H. Baughmanc, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 5359.
- [24] Y. J. Wan, P. L. Zhu, S. H. Yu, R. Sun, C. P. Wong, W. H. Liao, Carbon 2017, 122, 74.
- [25]Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, X. Xue, Z. Zhang, Small 2017, 13, 1701388.
- [26] Y. Q. Tan, H. Luo, X. S. Zhou, S. M. Peng, H. B. Zhang, RSC Adv. 2018, 8, 39314.
- [27] B. Zhao, C. Zhao, R. Li, S. M. Hamidinejad, C. B. Park, ACS Appl. Mater. Interfaces 2017, 9, 20873.
- [28]L. Huang, J. Li, Y. Li, X. He, Y. Yuan, Nanoscale 2019, 11, 8616.
- [29] F. Xu, R. Chen, Z. Lin, Y. Qin, Y. Yuan, Y. Li, X. Zhao, M. Yang, X. Sun, S. Wang, Q. Peng, Y. Li, X. He, ACS Omega 2018, 3, 3599.
- [30] X. Liu, Z. Yu, R. Ishikawa, L. Chen, X. Liu, X. Yin, Y. Ikuhara, R.Riedel, *Acta Mater*. **2017**, *130*, 83.
- [31]L. C. Jia, D. X. Yan, X. Jiang, H. Pang, J.F. Gao, P. G. Ren, Z. M. Li, *Ind. Eng. Chem. Res.* **2018**, *57*, 11929.
- [32]Z. Zeng, Y. Zhang, X. Y. D. Ma, S. I. S. Shahabadi, B. Che, P. Wang, X. Lu, *Carbon* **2018**, *140*, 227.
- [33] F. Huang, Y. Wang, P. Wang, H. L. Ma, X. Chen, K. Cao, Y. Pei, J. Peng, J. Lia, M, Zhai, *RSC Adv.* 2018, 8, 24236.
- [34] Y. J. Wan, P. L. Zhu, S. H. Yu, R. Sun, C. P. Wong, W. H. Liao, Small 2018, 14, 1800534.